Demo Abstract: Real-time Heterogeneous Edge Computing System for Social Sensing Applications

Yue Zhang, Nathan Vance, and Dong Wang

Department of Computer Science and Engineering
University of Notre Dame
IEEE RTAS 2018, Porto, Portugal
Social Sensing based Edge Computing (SSEC)

- **Edge computing** pushes applications, data and computing power (services) **away from centralized servers** (e.g., cloud) by performing data processing **at the edge** of the network, **where social sensing occurs** (near the sources of data).

Advantages:

- Low latency and high responsiveness
- Low requirement on the network bandwidth

![Diagram of SSEC](image-url)
Application Task Allocation in SSEC

When and *Where* should computation tasks be executed?

<table>
<thead>
<tr>
<th></th>
<th>Cooperative -ness</th>
<th>Latency</th>
<th>Bandwidth Consumption</th>
<th>Computing power</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backend Server</td>
<td>Fully cooperative</td>
<td>High</td>
<td>High</td>
<td>Powerful</td>
<td>Power line</td>
</tr>
<tr>
<td>Edge Device</td>
<td>Non-cooperative</td>
<td>Low</td>
<td>Low</td>
<td>Limited</td>
<td>Battery</td>
</tr>
</tbody>
</table>

Backend

- Fully cooperative
- High latency
- High bandwidth consumption
- Powerful computing power
- Power line power supply

Edge

- Non-cooperative
- Low latency
- Low bandwidth consumption
- Limited computing power
- Battery power supply
Bottom-up Game-theoretic Task Allocation
Demo: Heterogenous Edge Computing Platform

Module Diagram

Hardware Setup
Thank You!

Question?