
QuartzV: Bringing Quality of Time to
Virtual Machines

Sandeep D’souza and Raj Rajkumar
Carnegie Mellon University

IEEE RTAS @ CPS Week 2018 1

A Shared Notion of Time
● Coordinated Actions
● Ordering of Events

A Shared Notion of Time is useful
→ Replace Communication with Local Computation*

*Liskov, Distributed Computing ‘93
2

Coordination in Space and Time*

The cloud/edge is key to achieve scale

*D’souza et al., HotCloud ‘17
3

Cyber-Physical Edge-Cloud
● The cloud is key to enable geographical scaling

○ data storage
○ host the intelligence behind CPS

● Low-latency requirements of CPS
○ Safety-critical + real-time performance
○ A hierarchy of edge and cloud deployments

Virtualization is key for utilizing cloud and edge resources

4

Virtualization

Hardware-Accelerated CPU Instructions + Para-Virtual Peripheral Access
→ near-native performance for VMs

● OS-level (Containers)
● Hypervisor-based (VMs)

○ CPU Instructions
■ Emulation
■ Hardware-Acceleration

○ Peripheral Access
■ Full Virtualization
■ Para-Virtualization

5

Outline
● Motivation
● Background

○ Quality of Time (QoT)
○ Timelines
○ QoT Stack for Linux

● QuartzV
● Experimental Evaluation
● Conclusion

6

● Quantified
○ using clock parameters:

■ accuracy, precision, drift….
○ w.r.t a reference clock (time)

● Each timestamp has high-probability bounds
○ Timestamp ϵ {t-᷑

l
, t+᷑

h
}

Quality of Time (QoT)*

*Anwar et al., RTSS ‘16
7

The end-to-end uncertainty in the notion of time
delivered to an application by the system

QoT and Fault Detection
● Failure Scenario:

○ Clock Synchronization degrades
○ Reported QoT must reflect degradation

● Application-specific failover mechanisms
○ Physical and Analytical Redundancy

QoT can enable fault detection
→ fault-tolerant coordination in CPS

8

Enabling Coordination at Scale
● Timeline*: Virtual time reference

○ time-based coordination service
○ Platform-independent API

● Coordinated actions, distributed components
○ all components bind to a timeline
○ each specifying its required QoT

Timelines abstract away clock synchronization
→ Applications specify QoT requirements, framework orchestrates the system

*Anwar et al., RTSS ‘16

Timeline

100 us 100 us 100 us

10 ms

9

QoT Stack for Linux*

Support for ARM and x86 platforms
open source, modular implementation, no change to the Linux kernel

10
*Anwar et al., RTSS ‘16

Outline
● Motivation
● Background
● QuartzV

○ Challenges
○ Para-Virtual Design & Implementation
○ Full-Virtualization Support

● Experimental Evaluation
● Conclusion

11

Virtualization and Time
● Higher clock-read and interrupt latencies*

○ Overhead of additional abstraction layers
● Delivering application-specific requirements

○ different QoT requirements
○ different time scales

Providing near-native timing performance is a challenge

*Broomhead et al., OSDI ‘10
12

Quartz-V: Challenges
● Low-Latency Clock Reads + QoT estimates
● Supporting multiple VMs → multiple timelines
● Maintaining VM Isolation

○ prevent malicious VMs from affecting correct timing
● Portability

○ avoiding modifications to the kernel, hypervisor & application source

Objective: near-native performance while maintaining isolation and portability
13

Quartz-V: Key Ideas
● Extends the QoT Stack for Linux

○ QEMU-KVM hypervisor extensions for Virtual Machines
● Para-Virtual (PV) approach: “Time-as-a-service”

○ PV guests specify Timeline and QoT requests
○ Host performs clock sync + QoT Estimation

■ transfers the sync parameters to the guest
○ PV guests read a para-virtual host clock (KVM-Clock)

■ compute the “timeline” time using host-provided parameters

current
time

offset clock
skew

time passed since the clock
was last synchronized

14

qot_virtd: QoT Virtualization Daemon
● qot_virtd is the interface between:

○ QoT-aware applications in the guest VM, and
○ QoT Stack system-services/kernel-module on the host

qot_virtd acts as a server for client QoT-aware applications in a VM
15

Specifying Application Requests
● not on the application critical path

○ reliable, need not be low latency
● virtio_serial

○ bi-directional serial communication
○ scalable across multiple VMs

virtio_serial allows application requests to be specified to qot_virtd
hypervisor mechanism → no new changes required

16

Provide Clock + QoT Parameters
● Clock parameters required

○ to compute the current time
● Clock reads are on the critical path

○ reliable and low latency
● Inter-VM Shared Memory (ivshmem)

○ Host clock-sync service writes parameters
○ Guest Applications can read parameters

■ reading memory is low latency
■ VMs have read-only access, maintains isolation

QuartzV provides near-native performance
while maintaining isolation and portability

17

Fully-Virtual QoT Stack
● Some VMs/Hypervisors

○ do not support paravirtualization
● The entire QoT Stack inside a VM

○ Fully-Virtual deployment
○ clock sync achieves lower accuracy
○ clock reads have higher latency

The Fully-Virtual QoT Stack can provide full functionality,
but lower performance w.r.t. QuartzV

18

Outline
● Motivation
● Background
● QuartzV
● Experimental Evaluation

○ Performance Evaluation
○ Scalability Evaluation
○ Prototype Industrial Robotics Application

● Conclusion

19

Clock-Synchronization Accuracy
● Comparison using PTP (qot_ptp)

○ 8-core i7 CPU, with 16GB RAM
○ Clock Evaluation Test-Bed

● QuartzV
○ yields near-native accuracy
○ clock sync on the host

● Fully-Virtual QoT Stack
○ yields lower accuracy
○ clock sync in the VM
○ overhead of virtualized network stack

QuartzV can provide near-native clock-sync accuracy

20

S
yn

ch
ro

ni
za

tio
n

E
rr

or

CPU-stress Scalability Results

QuartzV is more resilient to CPU-intensive applications

21

Network-stress Scalability Results

QuartzV is more resilient to malicious network-intensive VMs

22

Network-Regulation Scalability Results

Bandwidth Regulation can prevent malicious network-intensive VMs
from degrading clock-synchronization accuracy

23

QuartzV: Clock-Read Latency Scalability

Shared Memory supports simultaneous read-only access
→ Bottleneck-free clock-read implementation

● Concurrent VMs performing clock reads
● QoT Clock v/s CLOCK_MONOTONIC

○ higher latency,
○ due to applying projection parameters,
○ and QoT calculations

● Slight increase in latency with new VMs
○ contention in reading the hardware timer
○ same trend for both clocks

24

Coordinated Industrial Robotics

QuartzV-enabled
Industrial Edge

Cloudlet

25

Industrial
Edge

Controllers

ROS-Gazebo
Robot Physics

Simulation

Conclusion and Future Work
● Geo-Distributed CPS: “Coordination at scale using time”
● QoT-awareness enables Fault Detection
● Quartz-V: Adds QoT-awareness to VMs

○ uses the para-virtual approach
■ delivers near-native timing performance
■ maintains isolation and scales to multiple VMs
■ resilient to malicious resource-intensive VMs

● Fully-Virtual QoT Stack for hypervisors/VMs with no para-virtual support
● Future Work

○ Building a Geo-Scale QoT-based CPS Coordination Framework
● Open source: https://bitbucket.org/rose-line/qot-stack/src

QuartzV can enable hosts of new geo-distributed coordinated Cyber-Physical Systems

26

Thank You ! Questions ?

Sandeep D’souza
sandeepd@andrew.cmu.edu

27

28

29

QoT Estimation Results

Estimated QoT (99.999% confidence)
bounds the measured clock-synchronization error

30

