
Hyeongboo Baek and	Jinkyu Lee
Sungkyunkwan University	(SKKU)

Physical-State-Aware	Dynamic	Slack	Management	for
Mixed-Criticality	Systems	

Hoon Sung	Chwa and	Kang	G.	Shin
University	of	Michigan



▪ Apps/systems	with	different	criticality	levels
▫ Automotive	systems

▪ Automotive	safety	integrity	level	(ASIL)	in	ISO	26262	standard
▪ Different	levels	of	safety	assurance

Mixed-Criticality	Systems

Acceleration	control	(ACC)

Braking	control	(ABS)
Steering	control	(AVS)

Lane	departure
Speedometer
Rear	camera

Navigation
Entertainment
Lighting



▪ Multiple worst-case	execution	time	(WCET)	estimates	
▫ Different	levels	of	confidence

▪ Low	criticality validation:	extensive	experimentation under	normal	scenarios
▪ High	criticality	certification:	cycle-counting/flow-analysis	under	pessimistic	assumptions

Mixed-Criticality	Systems

High	criticality
certification

Low	criticality
validation

Execution	time

Measurements

LC WCET HC WCET



▪ 2	different	criticality	levels
▫ low-criticality	(LC)	and	high-criticality	(HC)

▪ Multiple	execution	budgets
▫ Smaller	budget	for	normal	scenario

▪ All	tasks	are	required	to	meet	deadlines
▫ Larger	(conservative)	budget	for	rare	scenario

▪ High-critical	tasks are	still	required	to	meet	deadlines

Mixed-Criticality	(MC)	Task	Model

Steve	Vestal.	Preemptive	scheduling	of	multi-criticality	systems	with	varying	degrees	of	execution	time	assurance.	In	RTSS,	2007.

Normal scenario Rare scenario 

Smaller budget
For all tasks

Larger budget
For HC tasks

LC WCET HC WCET



▪ Assumption
▫ WCET	estimates	do	not change	during	runtime

▪ statically derived	independently	of	physical	states	

▪ In	practice,	

Motivation

State	2:	Approaching	vehicles

State	1:	No	vehicle	in	front Average
Measured
Worst	Case

Proven
Worst	Case

Average

Measured
Worst	Case

Proven
Worst	Case`



This	Paper
Different	criticality	levels Multiple	WCET	estimates

Dynamic execution	behavior	under	varying	physical	states



▪ Introduction
▪ Case	study
▫ Adaptive	cruise	control	(ACC)	&	active	vehicle	steering	(AVS)
▫ Other	applications

▪ Our	approach
▫ New	MC	task	model
▫ New	slack	concept
▫ Dynamic	slack	management	framework

▪ Evaluation

Organization	of	this	talk



▪ Adaptive	cruise	control	(ACC)
▫ Speed	control	to	maintain	a	safe	distance

Case	Study:	ADAS	system

▪ Active	vehicle	steering	(AVS)
▫ Steering	maneuver	to	avoid	collision

▪ Using	model	predictive	control (MPC)	in	Matlab
▫ Desired	speed:	30m/sec
▫ Sampling	period:	0.1sec
▫ Double	lane	change	maneuver

[Model	predictive	control	toolbox,	Matlab]



Motivational	Simulation	Results

Adaptive	Cruise	Control	(ACC) Active	Vehicle	Steering	(AVS)



Motivational	Simulation	Results

Adaptive	Cruise	Control	(ACC)

• Execution	time	is	strongly	correlated	with	a	
physical	state
• Less	exec.	time	(9—15	secs)

• 20x	more	exec.	time	(15—28	secs)

• Highly	dynamic over	a	wide	range



Motivational	Simulation	Results

Adaptive	Cruise	Control	(ACC) Active	Vehicle	Steering	(AVS)



▪ Engine	Control	Module
▫ Strong	correlation	between	physical	state and	resource	demand
▫ Speed	of	the	engine	crankshaft’s	rotation

Other	Applications

[Biondi et	al.,14] [Davis	et	al.,14]

Biondi et	al.	Exact	interference	of	adaptive	variable-rate	tasks	under	fixed-priority	scheduling. In	ECRTS,	2014.
Davis	et	al.	Schedulability tests	for	tasks	with	variable	rate-dependent	behavior	under	fixed	priority	scheduling.	In	RTAS,	2014.



▪ Vision-based	Object	Detection
▫ Strong	correlation	between	physical	state and	resource	demand
▫ The	number	of	objects	in	the	camera’s	field-of-view

Other	Applications

Niz et	al.	On	resource	overbooking	in	an	unmanned	aerial	vehicle.	In	ICCPS,	2012.



▪ If	dynamic	execution	behavior	is	not	considered,

Implication

State	2

State	1

Measured
worst-case

Proven
worst-case

`

Normal scenario

static LC execution budget allocation

Unused resources

Measured
worst-case

Proven
worst-case



▪ If	dynamic	execution	behavior	is	not	considered,

Implication

State	2

State	1

Measured
worst-case

Proven
worst-case

`

static HC execution budget allocation

Measured
worst-case

Proven
worst-case

Rare scenario 

Unused resources



▪ Motivation

▪ Goal

▫ Minimize	the	number	of	LC	job	drops	without	compromising	MC-schedulability

Our	Goal



▪ Q1.	How	to	capture	varying	resource	demands	with	physical	state?	
▫ New	MC	task	model

▪ Q2.	How	to	calculate	a	dynamic	slack?
▫ New	slack	concepts	for	MC	systems

▪ Q3.	How	to	schedule	the	slack	under	varying	physical	state?
▫ Physical-state-aware	dynamic	resource	allocation

Challenge



▪ Task	𝜏" = 𝑇", 𝐶", 𝐷", 𝐿" ,	where
▫ 𝐿" ∈ 𝐿𝐶,𝐻𝐶 ;

▪ LC	– low-critical	task,	HC	– high-critical	task

▫ 𝑪𝒊 = {𝑪𝒊𝑳(𝒔𝒊), 𝑪𝒊𝑯(𝒔𝒊)};	
▪ Physical	state	𝒔𝒊
▪ for	LC	task	𝐶"5(𝑠") = 𝐶"7(𝑠") and	for	HC	task	𝐶"5(𝑠") ≤ 𝐶"7(𝑠")

▫ Generalization	of	the	Vestal’s	task	model

▪ MC-Schedulable
▫ LC-mode guarantee:	if	no	task	executes	beyond	LC-WCET

▪ Every job	finishes	its	execution	(≤ LC-WCET)	before	its	deadline.	
▫ HC-mode guarantee:	if	any HC task	executes	beyond	LC-WCET	(mode-switch)

▪ Every	HC	job	finishes	its	execution	(≤ HC-WCET)	before	its	deadline.

Physical-State-Aware	MC	Task	Model



▪ Resource	allocation	in	each	mode	(according	to	MC-Schedulability)

▪ New	slack	concepts	for	MC	scheduling
▫ LC-mode slack	𝑺𝑳𝑪 𝒕𝟏, 𝒕𝟐

▪ The	amount	of	idle	time	in	[𝑡?, 𝑡@) under	LC-mode	resource	allocation without	
compromising	LC-mode	guarantee	

▫ HC-mode slack	𝑺𝑯𝑪 𝒕𝟏, 𝒕𝟐
▪ The	amount	of	idle	time	in	[𝑡?, 𝑡@) under	HC-mode	resource	allocation without	
compromising	HC-mode	guarantee	

New	Slack	Concept

LC-mode	allocation HC-mode	allocation

Both	LC	and	HC jobs	get
LC-WCET resource	budget

Only	HC jobs	get
HC-WCET resource	budget



▪ Focus	on	EDF-VD	[Baruah et	al.	12]

▪ Runtime	slack	scheduling
▫ LC/HC-mode	slack	scheduling
▫ Slack-based	mode-switch	mechanism

▪ Physical-state-aware	dynamic	resource	allocation
▫ Slack	updates
▫ Slack	calculation

Physical-State-Aware	Dynamic	Slack	Management

Baruah et	al.	The	preemptive	uniprocessor	scheduling	of	mixed-criticality	implicit-deadline	sporadic	task	systems.	In	ECRTS,	2012.

How	to	utilize	LC/HC-mode	slack

How	to	update/calculate	slack



▪ Runtime	slack	scheduling
▫ LC-mode slack	𝑺𝑳𝑪 𝒕𝟏, 𝒕𝟐 in	LC-mode

▪ Executing	HC	jobs’	HC-part	execution	without	triggering	a	mode-switch

Physical-State-Aware	Dynamic	Slack	Management

Time
LC-part HC-partHC	task

𝐶"5(𝑆1) 𝐶"7(𝑆1)

LC-part𝜏?

𝜏@

𝜏C

HC

HC

LC

𝑡DEF 𝑑?

𝑺𝑳𝑪 𝒕𝒄𝒖𝒓, 𝒅𝟏 = 𝟐LC-mode

No	completion

𝑺𝑳𝑪

𝑺𝑳𝑪 𝒕𝒄𝒖𝒓, 𝒅𝟏 = 𝟎

LC-part

LC-part

Under	EDF-VD
virtual	deadline
original	deadline



▪ Runtime	slack	scheduling
▫ LC-mode slack	𝑺𝑳𝑪 𝒕𝟏, 𝒕𝟐 in	LC-mode

▪ Executing	HC	jobs’	HC-part	execution	without	triggering	a	mode-switch
▫ Slack-based	mode-switch	mechanism

▪ Triggering	a	mode-switch	when	𝑺𝑳𝑪 𝒕𝟏, 𝒕𝟐 = 𝟎 with	no	completion

Physical-State-Aware	Dynamic	Slack	Management

Time
LC-part HC-partHC	task

𝐶"5(𝑆1) 𝐶"7(𝑆1)

LC-part𝜏?

𝜏@

𝜏C

HC

HC

LC

LC-mode

No	completion

𝑺𝑳𝑪

LC-part

LC-part

LC-part

𝑺𝑳𝑪 𝒕𝒄𝒖𝒓, 𝒅𝟐 = 𝟏

𝑡DEF 𝑑@

No	completion

𝑺𝑳𝑪

𝑺𝑳𝑪 𝒕𝒄𝒖𝒓, 𝒅𝟐 = 𝟎

No	completion

Mode-switch
LC-mode HC-mode

Under	EDF-VD
virtual	deadline
original	deadline



▪ Runtime	slack	scheduling
▫ LC-mode slack	𝑺𝑳𝑪 𝒕𝟏, 𝒕𝟐 in	LC-mode

▪ Executing	HC	jobs’	HC-part	execution	without	triggering	a	mode-switch
▫ HC-mode slack	𝑺𝑯𝑪 𝒕𝟏, 𝒕𝟐 in	HC-mode

▪ Executing	LC	jobs’	LC-part	execution	without	compromising	other	HC	jobs’	execution

Physical-State-Aware	Dynamic	Slack	Management

Time
LC-part HC-partHC	task

𝐶"5(𝑆1) 𝐶"7(𝑆1)

LC-part𝜏?

𝜏@

𝜏C

HC

HC

LC

No	completion

𝑺𝑳𝑪

LC-part

LC-part

LC-part

𝑡DEF 𝑑@

𝑺𝑳𝑪

Mode-switch
LC-mode HC-mode

𝑑C

𝑺𝑯𝑪 𝒕𝒄𝒖𝒓, 𝒅𝟑 = 𝟐
𝑺𝑯𝑪

HC

LC-part HC-part

Under	EDF-VD
virtual	deadline
original	deadline



▪ Physical-state-aware	dynamic	resource	allocation
▫ Runtime	slack	update

▪ Before	JOB-RELEASE
▫ Allocate	𝐶"

N,OPQ execution	budget,	𝑀 ∈ {𝐿𝐶, 𝐻𝐶}
▪ Upon	JOB-RELEASE	with	physical	state	S

▫ Reclaim	𝐶"
N,OPQ − CUV(S)

▪ Upon	JOB-COMPLETION	with	actual	execution	time	AC
▫ Reclaim	CUV S − AC

Physical-State-Aware	Dynamic	Slack	Management

𝐶"5(𝑆1) 𝐶"7(𝑆1)

𝐶"5 𝑆2 𝐶"7(𝑆2)

𝜏"
𝑆1

𝑆2

= =

𝐶"
5,OPQ 𝐶"

7,OPQ

𝐶"5(𝑆1) 𝐶"
5,OPQ

𝜏"

𝑆1LC-mode
Reclaimed	resource

𝐶"5(𝑆1)𝐴𝐶

𝜏"

𝑆1
Reclaimed	resource



▪ Physical-state-aware	dynamic	resource	allocation
▫ Slack	calculation

▪ Find	max.	slack	time	available	in	[𝑡DEF, 𝑑?(𝑡DEF))

Physical-State-Aware	Dynamic	Slack	Management

LC-mode slack:	delay	mode-switch

HC-mode slack:	delay	LC	job	drops
as	late	as	possible



worst-case	utilization	of	𝜏?

▪ Physical-state-aware	dynamic	resource	allocation
▫ Slack	calculation:	LC-mode slack

▪ In	reverse	EDF	order

Physical-State-Aware	Dynamic	Slack	Management

0.25

0.50

0.75

1.00

𝑡DEF

0 8 12 20

𝑑? 𝑑@ 𝑑C

worst-case	utilization	of	𝜏@

remaining	execution	(RC)	of	𝜏C

RC	of	𝜏@

6

RC	of	
𝜏@

RC	of	𝜏?

2

𝑆5[(𝑡DEF, 𝑑?) = 2
𝑈 = 𝑈]^

5 +
1
𝑥 ⋅ 𝑈]b

5 ≤ 1



▪ Case	study:	ADAS	system
▫ 2	HC	tasks:	ACC	and	AVS

▪ Period:	100ms
▪ Actual	execution	time	traces	

from	a	real	driving	scenario

▫ 4	LC	tasks

Evaluation

<ACC HC task>



▪ Case	study:	ADAS	system
▫ Simulation	results	for	80	seconds

Evaluation

Base-PHY-DSM: EDF-VD with the physical-state-aware dynamic slack management framework
Base: EDF-VD with the classic MC task model

0.6%

13.7%

12

201

21x 16x



▪ Extensive	simulations
▫ Synthetic	task	sets

▪ #	of	tasks:	4,	6,	8
▪ 300	task	sets

Evaluation

0.3%

5.9%

16

208

19x 12x



Summary

Proposed new	MC	task	model	&	slack	concept	that	capture	varying	resource	demands
Developed	dynamic	slack	management	that	enables	adaptive	resource	allocation

Enhanced	the	performance	of	low-criticality	tasks significantly




