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Mixed Criticality Systems 
 Mixed Criticality System (MCS) 

 A system comprising two or more applications with different criticality 
levels 

 Most complex embedded real-time systems are evolving into MCS for 
reasons of size, weight, power consumption and cost 
 

  Key research question 
 How to reconcile the conflicting requirements of separation for assurance 

and sharing for efficient resource usage? 
 Most research has looked at resource sharing 
 In this work we consider some issues arising from separation 
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MCS and Separation 
 Separation is vitally important 

 Safety standards (IEC61508, DO-178C, ISO26262) require that either all 
applications are developed to the standard required for the highest 
criticality application, or that independence between different applications 
is demonstrated in both spatial and temporal domains 
 

 Memory Address Spaces 
 In the spatial domain, the memory address space(s) used by HI-criticality 

applications must be inaccessible to LO-criticality applications 
 

  Process and Thread model 
 Each process has a separate address space 
 Threads within a process share the same address space 
 Achieve separation by mapping HI-criticality tasks to threads in one 

process and LO-criticality tasks to threads in another process 
 Alternatively, map all tasks from a given application to a distinct process 

(one process per application) 
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Processes and Threads 
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Context Switch Costs 
 Switching threads within the same process 

 This is the context switch between tasks of the same application (or same 
criticality) 

 Low cost – switch only the resources unique to threads 
e.g. processor state (program counter, stack pointer etc.) 
typically have hardware support for this 
 

 Switching between processes 
 This is the context switch between tasks of different applications (or 

different criticality) 
 High cost – switch all resources related to the process 

e.g. in addition to thread-level context switch, also switching memory 
address space, and since cache contents may not be valid, potentially 
there are additional cache operations. As the memory mapping changes it 
may be that some Translation Lookaside Buffer (TLB) entries are 
invalidated – TLB may need to be completely or partly flushed 
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Example System & motivation 
 Requirement 

 Isolate the cache usage of different applications 

 Hardware Configuration 
 Assumes explicit cache management saving and restoring cache state on 

process-level context switches (Whitham et al. [52]) 
 Tasks belonging to the same process are allocated distinct cache partitions 

 Properties 
 Partitioning means that thread-level context switches cause no Cache-

Related Pre-emption Delays (CRPD)  
 Process-level context switches save and restore the cache state, so cache 

contents are unchanged when a task resumes 
 Only impact that a LO-criticality task in one process can have on a HI-

criticality task in another process is via its execution time budget, which is 
strictly enforced by the RTOS (temporal separation) 

 Avoids security hazards – a low security process cannot use the cache as a 
side channel to obtain information about other high security processes 

Key point: Two very different context switch costs 
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This work 
 Provides schedulability analysis for MCS with two different 

context switch costs (process-level and thread-level) 
 

 Three scheduling policies considered 
 Fixed Priority Pre-emptive Scheduling (FPPS) 
 Static Mixed Criticality (SMC) 
 Adaptive Mixed Criticality (AMC) 

 

 Three flavours of analysis provided for each policy 
 Simple 
 Refined 
 Multiset 
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System Model 
 Uniprocessor 
 Fixed priority pre-emptive scheduling (FPPS, SMC, AMC) 
 Sporadic tasks (Vestal’s model for MCS) 
 Each task τi  

 Ti – Period or minimum inter-arrival time (sporadic behaviour) 
 Di – Constrained relative deadline 
 Li – Criticality level (LO or HI) 
 HI-criticality tasks have both Ci(HI) and Ci(LO) worst-case execution time 

estimates with Ci(HI) > Ci(LO) 
 LO-criticality tasks need only have Ci(LO)  

 Additionally 
 Each task is mapped to an address space Ai (and process) 
 When one task τi  pre-empts another task τj 

same address space (Ai = Aj) implies a small context switch cost CS  

change in address space (Ai ≠ Aj) implies a large context switch cost CC  

    (Here costs are for switching from and later back to the pre-empted task) 
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Response Time Analysis for FPPS: 
(Very) Simple Analysis 
 Method 

 Use large context switch cost CC  for every pre-emption 
 Equivalent to subsuming context switch times into WCET bounds 
 Response time for task τi  

 
 
 

 Fixed point iteration (converges or ends when value exceeds Di) 
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Response Time Analysis for FPPS: 
Simple Analysis 
 Example: 

 Three tasks with parameters  

 
 

 
 Further             and  
 Deadline Monotonic Priority Order (DMPO) is optimal 
 With priority order              then              hence task set is not schedulable  

 
 

 Part of schedule illustrating context switch costs 
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LO-criticality execution 

HI-criticality execution 



11 

Response Time Analysis for FPPS: 
Refined Analysis 
 Method 

 Consider the set of tasks                               that can be affected  by 
pre-emption by task τj  during the response time of task τi  
 
 

 
 

 Only get a large context switch cost for pre-emption by task τj  if there is 
some task τh  that can be pre-empted by task τj  during the response time 
of task τi  that belongs to a different process and hence different address 
space 
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Response Time Analysis for FPPS: 
Refined Analysis 
 Example: 

 Three tasks with parameters  

 
 

 
 Further             and  
 Deadline Monotonic Priority Order (DMPO) is not optimal 
 With priority order              then              hence task set is not schedulable  
 With priority order              then              and task set is schedulable  

 
 Part of schedule illustrating context switch costs 

 
 
 
 

 Audsley’s Optimal Priority Assignment algorithm 
is not applicable, since response time depends on  
priority order of higher priority tasks 

Shared process and address 
space implies small context 
switch cost 
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Response Time Analysis for FPPS: 
Multiset Analysis 
 Method 

 Accounts for the number of times that tasks with intermediate priorities 
may be pre-empted by task τj  during the response time of task τi   

 Avoids over-counting the number of large context switches that are 
possible 

 Avoids pessimism 
 Example again: DMPO  
 

 
 

     can only pre-empt      once each time     executes, since   
and TA = 100  so we can only get two (not three ) large context switches 
due to pre-emptions by     during the response time of  
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Response Time Analysis for FPPS: 
Multiset Analysis 
 Method 

 (Let                    denote the maximum number of times that a task τj can 
execute during the response time of some lower priority task τk ) 

 Account for the fact that task τj can pre-empt each intermediate task τk a 
maximum of                   times during the response time of task τi  

 Form a multiset with                    copies of the context switch time for 
task τj  pre-empting task 
 
 
 
 
 

 From the multiset, obtain an upper bound on the total context switch 
costs caused by the maximum number           of pre-emptions by task τj 
that can occur within the response time of task τi  
 
 
 

     where               returns the q-th largest value from the multiset 
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for all possible direct 
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Response Time Analysis for FPPS: 
Multiset Analysis 
 Method (continued) 

 Include the term for all context switches due to task τj in the response 
time analysis 
 
 

 Example 
 DMPO              

 
 
 
 

 Multiset        contains the value      twice since                  and 
and the value      three times since     

 The three largest values then give the overall context switch cost due to 
pre-emptions by      leading to              rather than    
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Analysis for SMC and AMC 
 SMC and AMC 

 Scheduling policies for MCS 
 

 In the paper 
 Derived simple, refined, and multiset analysis assuming two different 

context switch costs based on the ideas presented for FPPS  
 

 Key point 
 Accounting for when LO-criticality tasks can execute and so pre-empt or 

be pre-empted 
 With SMC: LO-criticality tasks can still execute in HI-criticality mode, and 

so can pre-empt or be pre-empted in that mode leading to large context 
switch costs. They can also have longer response times and miss their 
deadlines in HI-criticality mode 

 With AMC: LO-criticality tasks cannot execute in HI-criticality mode, so 
large context switch costs are avoided once that mode is established 
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Dominance relations 
 
 
 
 
 
 

 Meaning of Dominance 
 A schedulability analysis X is said to dominate an analysis Y (denoted by 

 X     Y ) if all tasks sets that are deemed schedulable by Y are also 
deemed schedulable by X, and there are also task sets that are deemed 
schedulable by X, but not by Y 
 

 By construction  
 AMC dominates SMC which dominates FPPS 
 Multiset Analysis dominates Refined Analysis dominates Simple Analysis 
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Priority Assignment 
 Optimality 

 Deadline Monotonic Priority Ordering (DMPO) is optimal for FPPS ignoring 
context switch costs and also with the simple analysis 

 Audsley’s OPA algorithm is optimal for SMC and AMC ignoring context 
switch costs and also with the simple analysis 

 Non-Optimality 
 The refined and multiset analyses for FPPS, SMC, and AMC are all 

incompatible with Audsley’s OPA algorithm since the response time of a 
low priority task depends on the relative priority ordering of higher priority 
tasks breaking Condition #1 for OPA-compatibility (see [29]). 

 Hints 
 For two classes of task (i.e. two processes / address spaces) empirical 

brute-force evaluation of all possible priority assignments on small task 
sets shows that if a schedulable priority assignment exists then there is 
often a schedulable assignment similar to DMPO with only a few tasks 
swapped in the ordering 
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Priority Assignment Heuristic 
 Idea 

 Start with DMPO swap at most two pairs of tasks  
i.e. check n2 rather than n! assignments 
 
 
 
 
 
 
 
 
 
 
 
 

 Much shorter runtime than exhaustive approach with reasonably good 
results 
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Context Switch Costs 
 Hardware configuration 

 Explicit cache management approach of Whitham et al. [52] 
 RTOS initiates cache save/restore which is done in hardware 
 Cache Budget Register (CBR) records number of lines to save/restore 
 Save/Restore Stack (SRS) holds tags for cache lines used by pre-empted 

tasks 
 Prototype FPGA 

implementation 
 
 

 Context switch 30μs 
(no save/restore) 

 Context switch 600μs 
(assuming 64Kbyte 
 data and instruction caches) 

 Values used in evaluation 
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Evaluation 
 Generated synthetic task sets 

 Number of tasks (Default n = 10) 
 Periods: Log-uniform distribution (Default 10ms – 1s) 
 Deadlines: Implicit 
 Utilisation values Ui  generated using Uunifast 
 LO-criticality execution times set via Ci(LO) = Ui Ti 
 HI-criticality execution times C(HI) = CF. C(LO) where CF is the 

criticality factor (Default CF = 2.0) 
 Probability CP  of a task being HI-criticality (Default CP = 0.5) 
 All LO-criticality tasks mapped to a single process and address space 
 Similarly all HI-criticality tasks mapped to a single process and 

address space which is distinct from that for the LO-criticality tasks 
 Context switch costs               and  
 All values integer units of μs 
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Evaluation 
 Compared the following schemes: 

 Scheduling policies: AMC, SMC, FPPS 
 Analyses: Simple, Refined, Multiset 
 Priority assignment policies: DMPO, heuristic (two swaps), exhaustive 
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Success ratio 

Larger improvement 
For multiset analysis when  
combined with priority 
     assignment 

Differences between 
simple – refined – multiset 
are small if the priority  
assignment is fixed 
         (DMPO) 
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Weighted schedulability:  
varying range of task periods 

Varying range of task 
periods from 100.5≈3 to 
103 =1,000 

 
 

 
 

Small range of periods 
relative performance of priority 
heuristic improves. More scope 
 to re-arrange tasks with 
 similar deadlines 

Smaller range of periods 
schedulability gets worse as 
small periods imply 
proportionately larger 
context switch costs 
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Weighted schedulability:  
varying large context switch cost 

Varying large context 
switch cost from 0 to 
1600μs 

 
 

 
 

With larger costs lower 
schedulability, and better 
relative performance using 
multiset analysis and 
re-arranging priorities  
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Conclusions 
 Summary 

 Considered a general model (arbitrary groupings of tasks to processes) 
that assumes process-level and thread-level context switches 

 Integrated two different context switch costs into response time analysis 
for FPPS, SMC, and AMC scheduling policies 

 Showed that Audsley’s Optimal Priority Assignment algorithm is not 
compatible with the more effective refined and multiset analyses 

 Priority assignment is important for this problem since it can significantly 
reduce context switch overheads by collecting tasks belonging to the 
same process together in the priority ordering 

 A simple heuristic was shown to be effective – but exhaustive 
exploration of priority assignment also indicates that there is more 
performance that could be obtained 
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Future work 
 Open questions 

 How to assign priorities? Can we find an optimal ordering without having 
to exhaustively explore all possibilities? 

 One disadvantage of fully pre-emptive scheduling is the large number of 
context switches – so how best to schedule tasks when there are two 
different context switch costs (process-level and thread-level)? 
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Questions? 
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