
Mixed Criticality Systems with
Varying Context Switch Costs

Robert I. Davis1, Sebastian Altmeyer 2, Alan Burns1

1Real-Time Systems Research Group, University of York, UK
2University of Amsterdam (UvA), Amsterdam, Netherlands

2

Mixed Criticality Systems
 Mixed Criticality System (MCS)

 A system comprising two or more applications with different criticality
levels

 Most complex embedded real-time systems are evolving into MCS for
reasons of size, weight, power consumption and cost

 Key research question
 How to reconcile the conflicting requirements of separation for assurance

and sharing for efficient resource usage?
 Most research has looked at resource sharing
 In this work we consider some issues arising from separation

3

MCS and Separation
 Separation is vitally important

 Safety standards (IEC61508, DO-178C, ISO26262) require that either all
applications are developed to the standard required for the highest
criticality application, or that independence between different applications
is demonstrated in both spatial and temporal domains

 Memory Address Spaces
 In the spatial domain, the memory address space(s) used by HI-criticality

applications must be inaccessible to LO-criticality applications

 Process and Thread model
 Each process has a separate address space
 Threads within a process share the same address space
 Achieve separation by mapping HI-criticality tasks to threads in one

process and LO-criticality tasks to threads in another process
 Alternatively, map all tasks from a given application to a distinct process

(one process per application)

4

Processes and Threads

Thread (task)

Thread (task)

Thread (task)

Process (application(s))
Address
Space

Ai

Thread (task)

Thread (task)

Thread (task)

Process (application(s))
Address
Space

Aj

Large context switch cost

Small
context
switch cost

Small
context
switch cost

5

Context Switch Costs
 Switching threads within the same process

 This is the context switch between tasks of the same application (or same
criticality)

 Low cost – switch only the resources unique to threads
e.g. processor state (program counter, stack pointer etc.)
typically have hardware support for this

 Switching between processes
 This is the context switch between tasks of different applications (or

different criticality)
 High cost – switch all resources related to the process

e.g. in addition to thread-level context switch, also switching memory
address space, and since cache contents may not be valid, potentially
there are additional cache operations. As the memory mapping changes it
may be that some Translation Lookaside Buffer (TLB) entries are
invalidated – TLB may need to be completely or partly flushed

6

Example System & motivation
 Requirement

 Isolate the cache usage of different applications

 Hardware Configuration
 Assumes explicit cache management saving and restoring cache state on

process-level context switches (Whitham et al. [52])
 Tasks belonging to the same process are allocated distinct cache partitions

 Properties
 Partitioning means that thread-level context switches cause no Cache-

Related Pre-emption Delays (CRPD)
 Process-level context switches save and restore the cache state, so cache

contents are unchanged when a task resumes
 Only impact that a LO-criticality task in one process can have on a HI-

criticality task in another process is via its execution time budget, which is
strictly enforced by the RTOS (temporal separation)

 Avoids security hazards – a low security process cannot use the cache as a
side channel to obtain information about other high security processes

Key point: Two very different context switch costs

7

This work
 Provides schedulability analysis for MCS with two different

context switch costs (process-level and thread-level)

 Three scheduling policies considered
 Fixed Priority Pre-emptive Scheduling (FPPS)
 Static Mixed Criticality (SMC)
 Adaptive Mixed Criticality (AMC)

 Three flavours of analysis provided for each policy
 Simple
 Refined
 Multiset

8

System Model
 Uniprocessor
 Fixed priority pre-emptive scheduling (FPPS, SMC, AMC)
 Sporadic tasks (Vestal’s model for MCS)
 Each task τi

 Ti – Period or minimum inter-arrival time (sporadic behaviour)
 Di – Constrained relative deadline
 Li – Criticality level (LO or HI)
 HI-criticality tasks have both Ci(HI) and Ci(LO) worst-case execution time

estimates with Ci(HI) > Ci(LO)
 LO-criticality tasks need only have Ci(LO)

 Additionally
 Each task is mapped to an address space Ai (and process)
 When one task τi pre-empts another task τj

same address space (Ai = Aj) implies a small context switch cost CS

change in address space (Ai ≠ Aj) implies a large context switch cost CC

 (Here costs are for switching from and later back to the pre-empted task)

9

Response Time Analysis for FPPS:
(Very) Simple Analysis
 Method

 Use large context switch cost CC for every pre-emption
 Equivalent to subsuming context switch times into WCET bounds
 Response time for task τi

 Fixed point iteration (converges or ends when value exceeds Di)

10

Response Time Analysis for FPPS:
Simple Analysis
 Example:

 Three tasks with parameters

 Further and
 Deadline Monotonic Priority Order (DMPO) is optimal
 With priority order then hence task set is not schedulable

 Part of schedule illustrating context switch costs

Large context switch cost
(every time)

LO-criticality execution

HI-criticality execution

11

Response Time Analysis for FPPS:
Refined Analysis
 Method

 Consider the set of tasks that can be affected by
pre-emption by task τj during the response time of task τi

 Only get a large context switch cost for pre-emption by task τj if there is
some task τh that can be pre-empted by task τj during the response time
of task τi that belongs to a different process and hence different address
space

Priority

τj

τi
τx

Lower priority than τj so they
can be pre-empted by τj At least
the priority of τi so they can
run within its response time

12

Response Time Analysis for FPPS:
Refined Analysis
 Example:

 Three tasks with parameters

 Further and
 Deadline Monotonic Priority Order (DMPO) is not optimal
 With priority order then hence task set is not schedulable
 With priority order then and task set is schedulable

 Part of schedule illustrating context switch costs

 Audsley’s Optimal Priority Assignment algorithm
is not applicable, since response time depends on
priority order of higher priority tasks

Shared process and address
space implies small context
switch cost

13

Response Time Analysis for FPPS:
Multiset Analysis
 Method

 Accounts for the number of times that tasks with intermediate priorities
may be pre-empted by task τj during the response time of task τi

 Avoids over-counting the number of large context switches that are
possible

 Avoids pessimism
 Example again: DMPO

 can only pre-empt once each time executes, since
and TA = 100 so we can only get two (not three) large context switches
due to pre-emptions by during the response time of

14

Response Time Analysis for FPPS:
Multiset Analysis
 Method

 (Let denote the maximum number of times that a task τj can
execute during the response time of some lower priority task τk)

 Account for the fact that task τj can pre-empt each intermediate task τk a
maximum of times during the response time of task τi

 Form a multiset with copies of the context switch time for
task τj pre-empting task

 From the multiset, obtain an upper bound on the total context switch
costs caused by the maximum number of pre-emptions by task τj
that can occur within the response time of task τi

 where returns the q-th largest value from the multiset

How many
times τj can
pre-empt each
job of τk

How many jobs of τk
can run during the
response time of τi

Multiset contains costs
for all possible direct
pre-emptions by τj

15

Response Time Analysis for FPPS:
Multiset Analysis
 Method (continued)

 Include the term for all context switches due to task τj in the response
time analysis

 Example
 DMPO

 Multiset contains the value twice since and
and the value three times since

 The three largest values then give the overall context switch cost due to
pre-emptions by leading to rather than

16

Analysis for SMC and AMC
 SMC and AMC

 Scheduling policies for MCS

 In the paper
 Derived simple, refined, and multiset analysis assuming two different

context switch costs based on the ideas presented for FPPS

 Key point
 Accounting for when LO-criticality tasks can execute and so pre-empt or

be pre-empted
 With SMC: LO-criticality tasks can still execute in HI-criticality mode, and

so can pre-empt or be pre-empted in that mode leading to large context
switch costs. They can also have longer response times and miss their
deadlines in HI-criticality mode

 With AMC: LO-criticality tasks cannot execute in HI-criticality mode, so
large context switch costs are avoided once that mode is established

17

Dominance relations

 Meaning of Dominance
 A schedulability analysis X is said to dominate an analysis Y (denoted by

 X Y) if all tasks sets that are deemed schedulable by Y are also
deemed schedulable by X, and there are also task sets that are deemed
schedulable by X, but not by Y

 By construction
 AMC dominates SMC which dominates FPPS
 Multiset Analysis dominates Refined Analysis dominates Simple Analysis

AMC Multiset

AMC Refined

AMC Simple

SMC Multiset

SMC Refined

SMC Simple

FPPS Multiset

FPPS Refined

FPPS Simple

18

Priority Assignment
 Optimality

 Deadline Monotonic Priority Ordering (DMPO) is optimal for FPPS ignoring
context switch costs and also with the simple analysis

 Audsley’s OPA algorithm is optimal for SMC and AMC ignoring context
switch costs and also with the simple analysis

 Non-Optimality
 The refined and multiset analyses for FPPS, SMC, and AMC are all

incompatible with Audsley’s OPA algorithm since the response time of a
low priority task depends on the relative priority ordering of higher priority
tasks breaking Condition #1 for OPA-compatibility (see [29]).

 Hints
 For two classes of task (i.e. two processes / address spaces) empirical

brute-force evaluation of all possible priority assignments on small task
sets shows that if a schedulable priority assignment exists then there is
often a schedulable assignment similar to DMPO with only a few tasks
swapped in the ordering

19

Priority Assignment Heuristic
 Idea

 Start with DMPO swap at most two pairs of tasks
i.e. check n2 rather than n! assignments

 Much shorter runtime than exhaustive approach with reasonably good
results

20

Context Switch Costs
 Hardware configuration

 Explicit cache management approach of Whitham et al. [52]
 RTOS initiates cache save/restore which is done in hardware
 Cache Budget Register (CBR) records number of lines to save/restore
 Save/Restore Stack (SRS) holds tags for cache lines used by pre-empted

tasks
 Prototype FPGA

implementation

 Context switch 30μs
(no save/restore)

 Context switch 600μs
(assuming 64Kbyte
 data and instruction caches)

 Values used in evaluation

21

Evaluation
 Generated synthetic task sets

 Number of tasks (Default n = 10)
 Periods: Log-uniform distribution (Default 10ms – 1s)
 Deadlines: Implicit
 Utilisation values Ui generated using Uunifast
 LO-criticality execution times set via Ci(LO) = Ui Ti
 HI-criticality execution times C(HI) = CF. C(LO) where CF is the

criticality factor (Default CF = 2.0)
 Probability CP of a task being HI-criticality (Default CP = 0.5)
 All LO-criticality tasks mapped to a single process and address space
 Similarly all HI-criticality tasks mapped to a single process and

address space which is distinct from that for the LO-criticality tasks
 Context switch costs and
 All values integer units of μs

22

Evaluation
 Compared the following schemes:

 Scheduling policies: AMC, SMC, FPPS
 Analyses: Simple, Refined, Multiset
 Priority assignment policies: DMPO, heuristic (two swaps), exhaustive

23

Success ratio

Larger improvement
For multiset analysis when
combined with priority
 assignment

Differences between
simple – refined – multiset
are small if the priority
assignment is fixed
 (DMPO)

24

Weighted schedulability:
varying range of task periods

Varying range of task
periods from 100.5≈3 to
103 =1,000

Small range of periods
relative performance of priority
heuristic improves. More scope
 to re-arrange tasks with
 similar deadlines

Smaller range of periods
schedulability gets worse as
small periods imply
proportionately larger
context switch costs

25

Weighted schedulability:
varying large context switch cost

Varying large context
switch cost from 0 to
1600μs

With larger costs lower
schedulability, and better
relative performance using
multiset analysis and
re-arranging priorities

26

Conclusions
 Summary

 Considered a general model (arbitrary groupings of tasks to processes)
that assumes process-level and thread-level context switches

 Integrated two different context switch costs into response time analysis
for FPPS, SMC, and AMC scheduling policies

 Showed that Audsley’s Optimal Priority Assignment algorithm is not
compatible with the more effective refined and multiset analyses

 Priority assignment is important for this problem since it can significantly
reduce context switch overheads by collecting tasks belonging to the
same process together in the priority ordering

 A simple heuristic was shown to be effective – but exhaustive
exploration of priority assignment also indicates that there is more
performance that could be obtained

27

Future work
 Open questions

 How to assign priorities? Can we find an optimal ordering without having
to exhaustively explore all possibilities?

 One disadvantage of fully pre-emptive scheduling is the large number of
context switches – so how best to schedule tasks when there are two
different context switch costs (process-level and thread-level)?

28

Questions?

	Mixed Criticality Systems with Varying Context Switch Costs
	Mixed Criticality Systems
	MCS and Separation
	Processes and Threads
	Context Switch Costs
	Example System & motivation
	This work
	System Model
	Response Time Analysis for FPPS:�(Very) Simple Analysis
	Response Time Analysis for FPPS:�Simple Analysis
	Response Time Analysis for FPPS:�Refined Analysis
	Response Time Analysis for FPPS:�Refined Analysis
	Response Time Analysis for FPPS:�Multiset Analysis
	Response Time Analysis for FPPS:�Multiset Analysis
	Response Time Analysis for FPPS:�Multiset Analysis
	Analysis for SMC and AMC
	Dominance relations
	Priority Assignment
	Priority Assignment Heuristic
	Context Switch Costs
	Evaluation
	Evaluation
	Success ratio
	Weighted schedulability: �varying range of task periods
	Weighted schedulability: �varying large context switch cost
	Conclusions
	Future work
	Questions?

