Mining Task Precedence Graphs from Real-Time Embedded System Traces

Oleg Iegorov Sebastian Fischmeister

Department of Electrical and Computer Engineering
University of Waterloo, Canada
{oiegorov, sfischme}@uwaterloo.ca

April 13, 2018
Software Growth in Real-time Systems

Sources:

Software-based Recalls in Automotive

Busy Beaver

$S(n, m)$: the largest number of steps taken by an n-state, m-symbol machine started on an initially blank tape before halting.
Busy Beaver

\(S(n, m) \): the largest number of steps taken by an \(n \)-state, \(m \)-symbol machine started on an initially blank tape before halting.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1RB</td>
<td>1LA</td>
</tr>
<tr>
<td>1</td>
<td>1LB</td>
<td>1RH</td>
</tr>
</tbody>
</table>

http://bit.ly/IJF9d0
Busy Beaver

\(S(n, m) \): the largest number of steps taken by an \(n \)-state, \(m \)-symbol machine started on an initially blank tape before halting.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1RB</td>
<td>1LA</td>
</tr>
<tr>
<td>1</td>
<td>1LB</td>
<td>1RH</td>
</tr>
</tbody>
</table>

0 0 1 1 1 1 0 0 (6 steps, four "1"s total)
Busy Beaver

$$S(5, 2) =$$

![Busy Beaver diagram]

- **State Diagram**
 - **A**
 - **B**
 - **C**
 - **D**
 - **E**
 - **H**

- **Transitions**
 - From **A**:
 - 0:1L -> E
 - 1:0L -> E
 - From **B**:
 - 0:1R -> C
 - 1:1L -> C
 - 1:1R -> A
 - From **C**:
 - 0:1R -> D
 - 1:1L -> D
 - From **D**:
 - 0:1L -> E
 - 1:1R -> E
 - From **E**:
 - 0:1L -> A
 - 1:0L -> A
 - 1:0R -> C
 - **H** is the halting state.
Busy Beaver

\[S(5, 2) = \]

\[S(2, 5) = \]

\[\geq 47, 176, 870 \]
Busy Beaver

\[S(5, 2) = \]

\[S(2, 5) = \geq 1.9 \times 10^{704} \]

\[\geq 47, 176, 870 \]
Need better theory, methods, and tools to build *and understand* systems.
Consequence from Current Trends

Need better theory, methods, and tools to build and understand systems.

→ Reverse engineering
Consequence from Current Trends

Need better theory, methods, and tools to build *and understand* systems.

→ Reverse engineering

Good news: more complexity means more data!
Consequence from Current Trends

Need better theory, methods, and tools to build \textit{and understand} systems.

→ Reverse engineering

\textbf{Good news:} more complexity means more data!

→ \textbf{Data-driven} reverse engineering
“(Software) reverse engineering is the process of analyzing a subject system to create representations of the system at a higher level of abstraction” [Chikofsky et al, 1990]

Traditionally used in the domain of desktop and enterprise software
Uses of Reverse Engineering in Real-time Systems

Possible applications:

- legacy code maintenance
- debugging
- anomaly detection
- testing
- documentation
Possible applications:

- legacy code maintenance
- debugging
- anomaly detection
- testing
- documentation

Timing is neglected in standard software reverse engineering tools.
Uses of Reverse Engineering in Real-time Systems

Possible applications:

• legacy code maintenance
• debugging
• anomaly detection
• testing
• documentation

Timing is neglected in standard software reverse engineering tools.

→ Tools for reverse engineering for real-time systems are needed
Characteristics of a Reverse Engineering Tool

- Representation of a system
 - Finite state machine
 - Petri net
 - Regular expressions
 - UML model
 - and others...

- Extraction of information from a system
 - Static: from source code
 - Dynamic: from traces
 - Hybrid

- Learning behaviour
 - Active: create new test cases and observe reaction
 - Passive: only observe
Characteristics of a Reverse Engineering Tool

- **Representation of a system**
 - Finite state machine
 - Petri net
 - Regular expressions
 - UML model
 - *Task precedence graph* ← TPG_miner
 - and others...

- **Extraction of information from a system**
 - Static: from source code
 - Dynamic: from traces
 - Hybrid

- **Learning behaviour**
 - Active: create new test cases and observe reaction
 - Passive: only observe
Characteristics of a Reverse Engineering Tool

• Representation of a system
 • Finite state machine
 • Petri net
 • Regular expressions
 • UML model
 • Task precedence graph \leftarrow TPG_miner
 • and others...

• Extraction of information from a system
 • Static: from source code
 • Dynamic: from traces \leftarrow TPG_miner
 • Hybrid

• Learning behaviour
 • Active: create new test cases and observe reaction
 • Passive: only observe
Characteristics of a Reverse Engineering Tool

- Representation of a system
 - Finite state machine
 - Petri net
 - Regular expressions
 - UML model
 - Task precedence graph \leftarrow TPG_miner
 - and others...

- Extraction of information from a system
 - Static: from source code
 - Dynamic: from traces \leftarrow TPG_miner
 - Hybrid

- Learning behaviour
 - Active: create new test cases and observe reaction
 - Passive: only observe \leftarrow TPG_miner
TPG miner (Task Precedence Graph miner)

Real-Time Embedded System

Trace

Task Precedence Graph

τ1
τ2 τ3 τ4 τ5 τ6
τ7 τ8
τ9
τ10 τ11 τ12 τ13

Sebastian Fischmeister, sfischme@uwaterloo.ca
- **Task ID**: conjunction of fields that uniquely identify a task.
- **Event**: tuple `<timestamp, task ID>`
- **Trace**: chronologically ordered list of events
Task Precedence Graph (TPG)

TPG is a DAG:

- Nodes (τ_i): task IDs;
- Edges ($\tau_i \rightarrow \tau_j$): immediate precedence relations (τ_i’s output is τ_j’s input), $\tau_i \ll \tau_j$.

Problem: How to mine immediate precedence relations from a trace?

Sebastian Fischmeister, sfischme@uwaterloo.ca
TPG is a DAG:
- Nodes (τ_i): task IDs;
- Edges ($\tau_i \rightarrow \tau_j$): immediate precedence relations (τ_i's output is τ_j's input), $\tau_i \ll \tau_j$.

Problem: How to mine immediate precedence relations from a trace?
1. Transactionalize trace to different events
1. Transactionalize trace to different events
2. Identify occurrence of events between events (→ occurrence pattern)
TPG_Miner Approach

1. Transactionalize trace to different events
2. Identify occurrence of events between events (→ occurrence pattern)
3. Extract precedence relations
TPG_Miner Approach

1. Transactionalize trace to different events
2. Identify occurrence of events between events (→ occurrence pattern)
3. Extract precedence relations
4. Create DAG from relations
TPG_Miner Approach

1. Transactionalize trace to different events
2. Identify occurrence of events between events (→ occurrence pattern)
3. Extract precedence relations
4. Create DAG from relations
5. Clean up the DAG
Occurrence Pattern (op)

Given a string s, its **occurrence pattern**, $op(s)$, is the shortest substring of s that "covers" s:

$$s = \langle 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0 \rangle$$
Occurrence Pattern (op)

Given a string s, its **occurrence pattern**, $op(s)$, is the shortest substring of s that "covers" s:

$$s = \langle 1,0,0,1,0,1,0,0,1,0 \rangle$$

- $p_1 = \langle 1,0,0,1,0 \rangle$ is the occurrence pattern of s, $op(s) = p_1$
Given a string s, its **occurrence pattern**, $op(s)$, is the shortest substring of s that "covers" s:

$$s = \langle 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0 \rangle$$

- $p_1 = \langle 1, 0, 0, 1, 0 \rangle$ is the occurrence pattern of s, $op(s) = p_1$
- $p_2 = \langle 3, 2 \rangle$ is not a substring of s
Occurrence Pattern (op)

Given a string \(s \), its **occurrence pattern**, \(op(s) \), is the shortest substring of \(s \) that "covers" \(s \):

\[
s = \langle 1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0 \rangle
\]

- \(p_1 = \langle 1,0,0,1,0 \rangle \) is the occurrence pattern of \(s \), \(op(s) = p_1 \)
- \(p_2 = \langle 3,2 \rangle \) is not a substring of \(s \)
- \(p_3 = \langle 1,0 \rangle \) is a substring of \(s \), doesn’t cover \(s \)
Given a string s, its **occurrence pattern**, $op(s)$, is the shortest substring of s that "covers" s:

$$s = \langle 1,0,0,1,0,1,0,0,1,0,1,0,0,1,0 \rangle$$

- $p_1 = \langle 1,0,0,1,0 \rangle$ is the occurrence pattern of s, $op(s) = p_1$
- $p_2 = \langle 3,2 \rangle$ is not a substring of s
- $p_3 = \langle 1,0 \rangle$ is a substring of s, doesn’t cover s
- $p_4 = \langle 1,0,0,1,0,1,0,0,1,0,1,0 \rangle$ covers s, but not the shortest (see p_1).
Occurrence Pattern (op)

Given a string \(s \), its occurrence pattern, \(op(s) \), is the shortest substring of \(s \) that "covers" \(s \):

\[
 s = \langle 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0 \rangle
\]

- \(p_1 = \langle 1, 0, 0, 1, 0 \rangle \) is the occurrence pattern of \(s \), \(op(s) = p_1 \)
- \(p_2 = \langle 3, 2 \rangle \) is not a substring of \(s \)
- \(p_3 = \langle 1, 0 \rangle \) is a substring of \(s \), doesn't cover \(s \)
- \(p_4 = \langle 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0 \rangle \) covers \(s \), but not the shortest (see \(p_1 \)).

Given a trace \(T = \langle \tau_i, \tau_h, \ldots \rangle \), \(op(\tau_i, \tau_j) \) is the occurrence pattern of a string \(s \) whose elements are the numbers of occurrences of \(\tau_i \) between consecutive occurrences of \(\tau_j \).

\[
 T = \langle \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6, \tau_7, \tau_3, \tau_4, \tau_7, \tau_5, \tau_4, \tau_7, \tau_2, \tau_1, \tau_5, \tau_7, \tau_6, \tau_7, \tau_7, \tau_3, \tau_2, \tau_5, \tau_4, \tau_7, \tau_7, \tau_5, \tau_2, \tau_7, \tau_1, \tau_7, \tau_2, \tau_7, \tau_5, \tau_1, \tau_7, \tau_3 \rangle
\]

\[
op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle
\]
Theorem

If a task τ_i is an immediate predecessor of a task τ_j ($\tau_i \ll \tau_j$) in a real-time system S, then there exists $op(\tau_i, \tau_j)$ in any execution trace of S captured during at least two hyperperiods of S.

Visualization of occurrences of tasks τ_2 and τ_7 during two hyperperiods;

$\tau_2 \ll \tau_7$; $op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle$.
Function mine_ops(T)

Data: trace T
Result: $\text{op}(\tau_i, \tau_j) \forall \tau_i, \tau_j \in T$

foreach $\tau_i \in T$ do
 foreach $\tau_j \in T$, $i \neq j$ do
 $s \leftarrow$ numbers of occurrences of τ_j between consecutive occurrences of τ_i in T
 foreach prefix q of s, $\text{length}(q)=1, 2, \ldots, \text{length}(s)/2$ do
 if q covers s then
 $\text{op}(\tau_i, \tau_j) \leftarrow q$
 break
 else if $\text{length}(q)==\text{length}(s)/2$ then
 $\text{op}(\tau_i, \tau_j) \leftarrow \text{NULL}$
 end
 end
 end
return op
end

$s = \langle 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0 \rangle$
Function \texttt{mine_ops}(T)

Data: trace \(T \)

Result: \(\text{op}(\tau_i, \tau_j) \ \forall \tau_i, \tau_j \text{ in } T \)

\begin{align*}
&\text{foreach } \tau_i \in T \text{ do} \\
&\quad \text{foreach } \tau_j \in T, i \neq j \text{ do} \\
&\quad \quad s \leftarrow \text{numbers of occurrences of } \tau_j \text{ between consecutive occurrences of } \tau_i \text{ in } T \\
&\quad \quad \text{foreach prefix } q \text{ of } s, \text{length}(q)=1,2,\ldots,\text{length}(s)/2 \text{ do} \\
&\quad \quad \quad \text{if } q \text{ covers } s \text{ then} \\
&\quad \quad \quad \quad \text{op}(\tau_i, \tau_j) \leftarrow q \\
&\quad \quad \quad \quad \text{break} \\
&\quad \quad \text{else if } \text{length}(q)==\text{length}(s)/2 \text{ then} \\
&\quad \quad \quad \quad \text{op}(\tau_i, \tau_j) \leftarrow \text{NULL} \\
&\quad \text{end} \\
&\text{end} \\
&\text{return } \text{op} \\
&\text{end}
\end{align*}

\[s = \langle 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0 \rangle \]

\[q = \langle 1 \rangle \]
Function \texttt{mine_ops}(T)

Data: trace T

Result: $op(\tau_i, \tau_j) \forall \tau_i, \tau_j$ in T

\begin{align*}
\text{foreach } \tau_i \in T \text{ do} & \\
& \hspace{1em} \text{foreach } \tau_j \in T, i \neq j \text{ do} & \\
& & s \leftarrow \text{numbers of occurrences of } \tau_j \text{ between consecutive occurrences of } \tau_i \text{ in } T & \\
& & \text{foreach prefix } q \text{ of } s, \text{length}(q)=1,2,...,\text{length}(s)/2 \text{ do} & \\
& & & \text{if } q \text{ covers } s \text{ then} & \\
& & & & \hspace{1em} op(\tau_i, \tau_j) \leftarrow q & \\
& & & & \text{break} & \\
& & & \text{else if } \text{length}(q)==\text{length}(s)/2 \text{ then} & \\
& & & & \hspace{1em} op(\tau_i, \tau_j) \leftarrow \text{NULL} & \\
& & \text{end} & \\
& \text{end} & \\
& \text{return } op & \\
\end{align*}

$s = \langle 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0 \rangle$

$q = \langle 1, 0 \rangle$
Mining Occurrence Patterns in a Trace

Function `mine_ops(T)`

Data: trace T

Result: $\text{op}(\tau_i, \tau_j) \ \forall \tau_i, \tau_j \in T$

foreach $\tau_i \in T$ do
 foreach $\tau_j \in T$, $i \neq j$ do
 $s \leftarrow$ numbers of occurrences of τ_j between consecutive occurrences of τ_i in T
 foreach prefix q of s, $\text{length}(q)=1,2,...,\text{length}(s)/2$ do
 if q covers s then
 $\text{op}(\tau_i, \tau_j) \leftarrow q$
 break
 else if $\text{length}(q)==\text{length}(s)/2$ then
 $\text{op}(\tau_i, \tau_j) \leftarrow \text{NULL}$
 end
 end
 end
end

$s = \langle 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0 \rangle$
$q = \langle 1, 0, 0 \rangle$
Function \texttt{mine_ops}(T)

Data: trace \(T \)

Result: \(op(\tau_i, \tau_j) \ \forall \tau_i, \tau_j \) in \(T \)

\begin{verbatim}
foreach \(\tau_i \in T \) do
 foreach \(\tau_j \in T, i \neq j \) do
 \(s \leftarrow \) numbers of occurrences of \(\tau_j \) between consecutive occurrences of \(\tau_i \) in \(T \)
 foreach prefix \(q \) of \(s \), length\((q) = 1, 2, \ldots, length(s) / 2 \) do
 if \(q \) covers \(s \) then
 \(op(\tau_i, \tau_j) \leftarrow q \)
 break
 else if \(length(q) == length(s) / 2 \) then
 \(op(\tau_i, \tau_j) \leftarrow \) NULL
 end
 end
 end
end
\end{verbatim}

\(s = \langle 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0 \rangle \)

\(q = \langle 1, 0, 0, 1 \rangle \)
Function `mine_ops(T)`

Data: trace T

Result: $op(\tau_i, \tau_j) \forall \tau_i, \tau_j \in T$

foreach $\tau_i \in T$ do
 foreach $\tau_j \in T$, $i \neq j$ do
 $s \leftarrow$ numbers of occurrences of τ_j between consecutive occurrences of τ_i in T
 foreach prefix q of s, $\text{length}(q) = 1, 2, \ldots, \text{length}(s) / 2$ do
 if q covers s then
 $op(\tau_i, \tau_j) \leftarrow q$
 break
 else if $\text{length}(q) = \text{length}(s) / 2$ then
 $op(\tau_i, \tau_j) \leftarrow \text{NULL}$
 end
 end
end

return op

\[s = \langle 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0 \rangle \]
\[q = \langle 1, 0, 0, 1, 0 \rangle \]
Function $\text{mine}_\text{TPG}(T)$

Data: trace T

Result: TPG of T

1. $\text{nodes} \leftarrow \text{unique task IDs in } T$
2. $\text{edges} \leftarrow \text{mine}_\text{ops}(T)$
3. $\text{TPG} \leftarrow (\text{nodes}, \text{edges})$
4. $\text{TPG} \leftarrow \text{transitive}_\text{closure}(\text{TPG})$
5. return TPG
Function `mine_TPG(T)`

Data: trace T

Result: TPG of T

1. `nodes ← unique task IDs in T`
2. `edges ← mine_ops(T)`
3. `TPG ← (nodes, edges)`
4. `TPG ← transitive_closure(TPG)`
5. `return TPG`

![Diagram of TPG](image-url)
Mining a TPG from a Trace

Function `mine_TPG(T)`

Data: trace T

Result: TPG of T

1. nodes \leftarrow unique task IDs in T
2. edges \leftarrow `mine_ops(T)`
3. $\text{TPG} \leftarrow$ (nodes, edges)
4. $\text{TPG} \leftarrow$ transitive_closure(TPG)
5. return TPG
Function mine_TPG(T)
 Data: trace T
 Result: TPG of T
 nodes ← unique task IDs in T
 edges ← mine_ops(T)
 TPG ← (nodes, edges)
 TPG ← transitive_closure(TPG)
 return TPG
Anomaly-based Intrusion Detection Systems

- Intrusion detection system (IDS) monitors a system/network for malicious activity.
- Anomaly-based IDS identifies observations (packets, syscalls, etc.) which do not conform to an expected pattern observed during normal operation.
- IDS must be trustworthy, low false positive rate is often more important than low false negative rate.
- Desired features of an IDS:
 - online operation
 - explainable results
- TPG represents an expected pattern for an anomaly-based IDS.
Train TPG on other traces and perform online anomaly detection:

Data: trace stream W, TPG G

Result: trained G or anomalous event ϵ in W for each $\epsilon \in W$ in the increasing order of ϵ. time

1. $\nu \leftarrow \epsilon$.
2. **task id**
3. foreach τ such that $e(\tau, \nu) \in G$
4. $u(\tau, \nu) \leftarrow$ append the # of occurrences of τ since previous occurrence of ν
5. if $u(\tau, \nu)$ is not a prefix of $op(\tau, \nu)$
6. if training then remove $e(\tau, \nu)$ from G; update G
7. else return ϵ. time, $u(\tau, \nu)$, $op(\tau, \nu)$
8. end
9. if training then return G
10. else return False

$T = \langle op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle, u(\tau_2, \tau_7) = \langle 0 \rangle \rangle$
Train TPG on other traces and perform online anomaly detection:

Data: trace stream \mathcal{W}, TPG G
Result: trained G or anomalous event ϵ in \mathcal{W}

foreach $\epsilon \in \mathcal{W}$ in the increasing order of ϵ.time do
 $\nu \leftarrow \epsilon$.task_id
 foreach τ such that $e(\tau, \nu) \in G$ do
 $u(\tau, \nu) \leftarrow$ append the # of occurrences of τ since previous occurrence of ν
 if $u(\tau, \nu)$ is not a prefix of $op(\tau, \nu)$ then
 if training then remove $e(\tau, \nu)$ from G; update G
 else return ϵ.time, $u(\tau, \nu)$, $op(\tau, \nu)$
 end
 end
 if training then return G
 else return False
end

$T = \langle$
$op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle$
$u(\tau_2, \tau_7) = \langle$
TPGs for Anomaly Detection

Train TPG on other traces and perform online anomaly detection:

Data: trace stream W, TPG G

Result: trained G or anomalous event ε in W

foreach $\varepsilon \in W$ in the increasing order of ε.time do
 $\upsilon \leftarrow \varepsilon$.task_id
 foreach τ such that $e(\tau, \upsilon) \in G$ do
 $u(\tau, \upsilon) \leftarrow$ append the # of occurrences of τ since previous occurrence of υ
 if $u(\tau, \upsilon)$ is not a prefix of $op(\tau, \upsilon)$ then
 if $training$ then remove $e(\tau, \upsilon)$ from G; update G
 else return ε.time, $u(\tau, \upsilon)$, $op(\tau, \upsilon)$
 end
 end
 if $training$ then return G
else return False
end

$T = \langle \tau_1, \tau_2, \rangle$

$op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle$

$u(\tau_2, \tau_7) = \langle 1 \rangle$
TPGs for Anomaly Detection

Train TPG on other traces and perform online anomaly detection:

Data: trace stream W, TPG G
Result: trained G or anomalous event ε in W

\[
\text{foreach } \varepsilon \in W \text{ in the increasing order of } \varepsilon.\text{time} \text{ do}
\]
\[
\nu \leftarrow \varepsilon.\text{task_id}
\]
\[
\text{foreach } \tau \text{ such that } e(\tau, \nu) \in G \text{ do}
\]
\[
\nu(\tau, \nu) \leftarrow \text{append the } \# \text{ of occurrences of } \tau \text{ since previous occurrence of } \nu
\]
\[
\text{if } \nu(\tau, \nu) \text{ is not a prefix of } op(\tau, \nu) \text{ then}
\]
\[
\text{if training then remove } e(\tau, \nu) \text{ from } G; \text{ update } G
\]
\[
\text{else return } \varepsilon.\text{time}, \nu(\tau, \nu), op(\tau, \nu)
\]
\[
\text{end}
\]
\[
\text{if training then return } G
\]
\[
\text{else return False}
\]
\[
T = \langle \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6, \tau_7 \rangle
\]
\[
op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle
\]
\[
u(\tau_2, \tau_7) = \langle 1 \rangle
\]
\[
u(\tau_2, \tau_7) \text{ is a prefix of } op(\tau_2, \tau_7)
\]
TPGs for Anomaly Detection

Train TPG on other traces and perform online anomaly detection:

Data: trace stream W, TPG G
Result: trained G or anomalous event ε in W

\[
\begin{align*}
\text{foreach } \varepsilon \in W \text{ in the increasing order of } \varepsilon.\text{time do} \\
&\quad \upsilon \leftarrow \varepsilon.\text{task_id} \\
&\quad \text{foreach } \tau \text{ such that } e(\tau, \upsilon) \in G \text{ do} \\
&\quad & u(\tau, \upsilon) \leftarrow \text{append the } \# \text{ of occurrences of } \tau \text{ since previous occurrence of } \upsilon \\
&\quad & \text{if } u(\tau, \upsilon) \text{ is not a prefix of } op(\tau, \upsilon) \text{ then} \\
&\quad & \quad \text{if } \text{training then remove } e(\tau, \upsilon) \text{ from } G; \text{ update } G \\
&\quad & \quad \text{else return } \varepsilon.\text{time}, u(\tau, \upsilon), op(\tau, \upsilon) \\
&\quad \text{end} \\
&\quad \text{if } \text{training then return } G \\
&\text{else return } \text{False} \\
\end{align*}
\]

\[
T = \langle \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6, \tau_7, \tau_3, \tau_4, \tau_7 \rangle \\
op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle \\
u(\tau_2, \tau_7) = \langle 1, 0 \rangle \quad \text{\(u(\tau_2, \tau_7)\) is a prefix of \(op(\tau_2, \tau_7)\)}
TPGs for Anomaly Detection

Train TPG on other traces and perform online anomaly detection:

Data: trace stream W, TPG G
Result: trained G or anomalous event ε in W

foreach $\varepsilon \in W$ in the increasing order of ε.time do
 $\tau \leftarrow \varepsilon$.task_id
 foreach τ such that $e(\tau, \tau) \in G$ do
 $u(\tau, \tau) \leftarrow$ append the # of occurrences of τ since previous occurrence of τ
 if $u(\tau, \tau)$ is not a prefix of $op(\tau, \tau)$ then
 if training then remove $e(\tau, \tau)$ from G; update G
 else return ε.time, $u(\tau, \tau)$, $op(\tau, \tau)$
 end
 end
 if training then return G
else return False

$T = \langle \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6, \tau_7, \tau_3, \tau_4, \tau_7, \tau_5, \tau_2 \rangle$

$op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle$

$u(\tau_2, \tau_7) = \langle 1, 0, 1 \rangle$
TPGs for Anomaly Detection

Train TPG on other traces and perform online anomaly detection:

Data: trace stream \mathbb{W}, TPG G

Result: trained G or anomalous event ε in \mathbb{W}

\[
\text{foreach } \varepsilon \in \mathbb{W} \text{ in the increasing order of } \varepsilon.\text{time do}
\]

\[
\text{foreach } \tau \text{ such that } e(\tau, \varepsilon) \in G \text{ do}
\]

\[
\upsilon \leftarrow \varepsilon.\text{task_id}
\]

\[
\text{foreach } \tau \text{ such that } e(\tau, \upsilon) \in G \text{ do}
\]

\[
\upsilon(\tau, \upsilon) \leftarrow \text{append the # of occurrences of } \tau \text{ since previous occurrence of } \upsilon
\]

\[
\text{if } \upsilon(\tau, \upsilon) \text{ is not a prefix of } \text{op}(\tau, \upsilon) \text{ then}
\]

\[
\text{if training then remove } e(\tau, \upsilon) \text{ from } G; \text{ update } G
\]

\[
\text{else return } \varepsilon.\text{time}, \upsilon(\tau, \upsilon), \text{op}(\tau, \upsilon)
\]

\[
\text{end if training then return } G
\]

\[
\text{else return False}
\]

\[
T = \langle \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6, \tau_7, \tau_3, \tau_4, \tau_7, \tau_5, \tau_2, \tau_4, \tau_2 \rangle
\]

\[
op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle
\]

\[
u(\tau_2, \tau_7) = \langle 1, 0, 2 \rangle
\]
TPGs for Anomaly Detection

Train TPG on other traces and perform online anomaly detection:

Data: trace stream \mathcal{W}, TPG G
Result: trained G or anomalous event ε in \mathcal{W}

foreach $\varepsilon \in \mathcal{W}$ in the increasing order of ε.time do
 $\tau \leftarrow \varepsilon$.task_id
 foreach τ such that $e(\tau, \varepsilon) \in G$ do
 $u(\tau, \varepsilon) \leftarrow$ append the # of occurrences of τ since previous occurrence of ε
 if $u(\tau, \varepsilon)$ is not a prefix of $op(\tau, \varepsilon)$ then
 if training then remove $e(\tau, \varepsilon)$ from G; update G
 else return ε.time, $u(\tau, \varepsilon)$, $op(\tau, \varepsilon)$
 end
 end
if training then return G
else return False
end

$T = \langle \tau_1, \tau_2, \tau_3, \tau_4, \tau_5, \tau_6, \tau_7, \tau_3, \tau_4, \tau_7, \tau_5, \tau_2, \tau_4, \tau_2, \tau_7 \rangle$

$op(\tau_2, \tau_7) = \langle 1, 0, 0, 1, 0 \rangle$

$u(\tau_2, \tau_7) = \langle 1, 0, 2 \rangle$

$u(\tau_2, \tau_7)$ is not a prefix of $op(\tau_2, \tau_7)$
Modern vehicles:

- becoming connected (internet, bluetooth, radars, etc.);
- becoming autonomous (automatic parking, autopilot).

Security threats:

1. Remotely hack one or several ECUs, run malicious code on them.
2. Spoof the identity of the hacked ECUs.
3. Take over the control of the vehicle.

Examples:

- Miller and Valasek on Jeep Cherokee (2015)\(^1\)
- Tencent Keen Lab on Tesla Model S (2016, 2017)\(^2\)

\(^1\)https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
\(^2\)https://www.pcmag.com/news/355281/tesla-model-s-hackers-return-for-encore-attack
Modern vehicles:

- becoming connected (internet, bluetooth, radars, etc.);
- becoming autonomous (automatic parking, autopilot).

Security threats:

1. Remotely hack one or several ECUs, run malicious code on them.
2. Spoof the identity of the hacked ECUs.
3. Take over the control of the vehicle.

Examples:

- Miller and Valasek on Jeep Cherokee (2015) \(^1\)
- Tencent Keen Lab on Tesla Model S (2016, 2017) \(^2\)

\(^1\)https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
\(^2\)https://www.pcmag.com/news/355281/tesla-model-s-hackers-return-for-encore-attack
Controller Area Network (CAN) bus:

- de-facto standard for interconnecting vehicle’s ECUs;
- ECUs broadcast messages;
- no authentication;

CAN bus trace:

<table>
<thead>
<tr>
<th>time</th>
<th>message ID</th>
<th>bytes</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>b5</th>
<th>b6</th>
<th>b7</th>
<th>b8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1478193190</td>
<td>0545</td>
<td>8</td>
<td>d8</td>
<td>5f</td>
<td>00</td>
<td>8b</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>1478193190</td>
<td>05f0</td>
<td>2</td>
<td>01</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1478193190</td>
<td>0130</td>
<td>8</td>
<td>0b</td>
<td>80</td>
<td>00</td>
<td>ff</td>
<td>0f</td>
<td>80</td>
<td>0c</td>
<td>ea</td>
</tr>
<tr>
<td>1478193190</td>
<td>0131</td>
<td>8</td>
<td>f2</td>
<td>7f</td>
<td>00</td>
<td>00</td>
<td>15</td>
<td>7f</td>
<td>0c</td>
<td>35</td>
</tr>
<tr>
<td>1478193190</td>
<td>0140</td>
<td>8</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>1e</td>
<td>0d</td>
<td>2c</td>
<td>3b</td>
<td></td>
</tr>
<tr>
<td>1478193190</td>
<td>02c0</td>
<td>8</td>
<td>15</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>
Case Studies

CAN bus traces:

Study 1 Hyundai YF Sonata with injected and annotated spoofed messages (HCRL lab at Korea University)³

![Hyundai YF Sonata](image)

Study 2 Production vehicle exercised on a test track (traces provided by our partner).

³http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset
Case Study 1

- 4 traces with annotated spoofed messages.
- Spoofed messages have unique message IDs in two traces (DoS.csv and Fuzzy.csv):
 - Use these traces to train a TPG;
 - Train on "normal" parts: before the first spoofed message, 1000 events in each part.

![The trained TPG](image)

Sebastian Fischmeister, sfischme@uwaterloo.ca
Anomaly detection in the remaining 2 traces (gear.csv and RPM.csv):

- attacks were detected prior to the first spoofed message – very good:
 - 29 events before the first spoofed message in gear.csv
 - 7 events before the first spoofed message in RPM.csv
- detected anomalies are probably caused by the activation of an external board used to inject spoofed messages.
Case Study I (cont.)

Anomaly detection in the remaining 2 traces (gear.csv and RPM.csv):

• attacks were detected prior to the first spoofed message – very good:
 • 29 events before the first spoofed message in gear.csv
 • 7 events before the first spoofed message in RPM.csv
 • detected anomalies are probably caused by the activation of an external board used to
 inject spoofed messages.

• false positive rates:
 • gear.csv: 0.019 (19 out of 1000 events)
 • RPM.csv: 0.007 (7 out of 1000 events)
 • (almost) all false positives are returned in the beginning of traces.

Observation: synchronization between analyzer and runtime needed
Case Study II

- Traces capture normal behavior of vehicle’s ECUs, no anomalies
- The goal: evaluation of false positive rate
- 15 traces in total:

<table>
<thead>
<tr>
<th>Trace</th>
<th>Duration (s)</th>
<th># events</th>
<th># tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>312</td>
<td>793,653</td>
<td>252</td>
</tr>
<tr>
<td>2</td>
<td>245.5</td>
<td>653,932</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>361.3</td>
<td>907,038</td>
<td>224</td>
</tr>
<tr>
<td>4</td>
<td>390</td>
<td>1,044,558</td>
<td>251</td>
</tr>
<tr>
<td>5</td>
<td>352.6</td>
<td>891,195</td>
<td>235</td>
</tr>
<tr>
<td>6</td>
<td>287</td>
<td>727,508</td>
<td>243</td>
</tr>
<tr>
<td>7</td>
<td>288.7</td>
<td>767,148</td>
<td>239</td>
</tr>
<tr>
<td>8</td>
<td>307.2</td>
<td>1,260,299</td>
<td>243</td>
</tr>
<tr>
<td>9</td>
<td>600</td>
<td>1,425,667</td>
<td>219</td>
</tr>
<tr>
<td>10</td>
<td>343.2</td>
<td>866,187</td>
<td>229</td>
</tr>
<tr>
<td>11</td>
<td>319</td>
<td>847,882</td>
<td>241</td>
</tr>
<tr>
<td>12</td>
<td>249.9</td>
<td>635,463</td>
<td>235</td>
</tr>
<tr>
<td>13</td>
<td>342.1</td>
<td>991,105</td>
<td>276</td>
</tr>
<tr>
<td>14</td>
<td>314.3</td>
<td>834,942</td>
<td>257</td>
</tr>
<tr>
<td>15</td>
<td>283.8</td>
<td>754,786</td>
<td>239</td>
</tr>
</tbody>
</table>
Evaluate the number of false positives (FPs):

1) build a TPG G using trace #1;
2) detect anomalies in trace #2 using G; detected anomalies are FPs.
3) refine G with trace #2;
4) detect anomalies in trace #3 using G; detected anomalies are FPs.
5) refine G with trace #3;
6) apply the same procedure on traces #4-15.

<table>
<thead>
<tr>
<th>Trace</th>
<th># FPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>140</td>
</tr>
<tr>
<td>3</td>
<td>220</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

The trained TPG. Only nodes with I/O edges shown.
Many Other Applications

- Insight and understanding for developers
Many Other Applications

- Insight and understanding for developers
- Documentation of (legacy) systems
Many Other Applications

- Insight and understanding for developers
- Documentation of (legacy) systems
- Debugging
Many Other Applications

- Insight and understanding for developers
- Documentation of (legacy) systems
- Debugging
- Safety assessment
Many Other Applications

- Insight and understanding for developers
- Documentation of (legacy) systems
- Debugging
- Safety assessment
- Runtime monitoring
Many Other Applications

- Insight and understanding for developers
- Documentation of (legacy) systems
- Debugging
- Safety assessment
- Runtime monitoring
- Model generation for simulation and optimization
Many Other Applications

- Insight and understanding for developers
- Documentation of (legacy) systems
- Debugging
- Safety assessment
- Runtime monitoring
- Model generation for simulation and optimization
- ...

Sebastian Fischmeister, sfischme@uwaterloo.ca
Conclusion

• **TPG_miner**: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces.
Conclusion

- **TPG**\text{_miner}: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
Conclusion

- **TPG_miner**: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
 - can be used as an anomaly-based intrusion detection system

Sebastian Fischmeister, sfischme@uwaterloo.ca
Conclusion

- **TPG_miner**: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
 - can be used as an anomaly-based intrusion detection system
 - straightforward application on CAN bus traces
Conclusion

- **TPG_miner**: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
 - can be used as an anomaly-based intrusion detection system
 - straightforward application on CAN bus traces

- Detects anomalies in streaming data

Sebastian Fischmeister, sfischme@uwaterloo.ca 28 / 28
Conclusion

- **TPG_miner**: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
 - can be used as an anomaly-based intrusion detection system
 - straightforward application on CAN bus traces

- Detects anomalies in streaming data

- Explains which expected system behavior has been violated
Conclusion

- **TPG** miner: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
 - can be used as an anomaly-based intrusion detection system
 - straightforward application on CAN bus traces

- Detects anomalies in streaming data

- Explains which expected system behavior has been violated

- Requires little training to achieve low false positive rate
Conclusion

- **TPG_miner**: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
 - can be used as an anomaly-based intrusion detection system
 - straightforward application on CAN bus traces

- Detects anomalies in streaming data

- Explains which expected system behavior has been violated

- Requires little training to achieve low false positive rate

- Implemented in R: https://bitbucket.org/oiegorov/tpg_miner
Conclusion

- **TPG_miner**: an approach to reverse-engineer real-time embedded systems via mining task precedence graphs from system traces

- Evaluation in the context of automotive security
 - can be used as an anomaly-based intrusion detection system
 - straightforward application on CAN bus traces

- Detects anomalies in streaming data

- Explains which expected system behavior has been violated

- Requires little training to achieve low false positive rate

- Implemented in R: https://bitbucket.org/oiegorov/tpg_miner
 - the README file explains how to reproduce results of Case Study I.