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Introduction

● GPU is specialized in parallel computing workload
○ Embedded systems can earn substantial benefit from GPU 

computing

3

Embedded

Voice Recognition

Face Detection

Health Analysis

NVIDIA’s  Machine Learning Benchmark

13.6! Faster

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling



! Introduction

! Motivation

! Related Work

! Background

! Our Approach
! Design
! Implementation

! Evaluation

! Conclusion
4



Delayed

Motivation

! Example: Autonomous vehicle control systems using GPU
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Motivation

! Priority inversion problem on GPU
" No GPU Preemption HW and Interfaces
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Related Work - Hardware

! HW extension for preemptive GPU scheduling
• Experimental architecture was proposed and evaluated with 

simulation
• Nvidia commercialized GPUs with HW preemption

! Limitations of HW GPU preemption
• Up to 100! s context switching time from massive amount of state 

saving/restoring 
• Increased complexity in HW design and thus cost to manufacture
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(But, they have not disclosed API for its, yet)
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● Kernel slicing approach

● Thread-block-level scheduling approach

High Priority
Sub Kernel

Related Work - Software
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We propose a software preemption solution that
! Immediately aborts currently running kernel 
! Re-executes aborted kernels later
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Background – Shared System Memory

● GPU memory management in embedded systems
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CPU can directly 
access GPU memory



Background ÐShared Kernel Buffers

! Producer-consumer relationships through sharing kernel buffers

! Blind abortion and re -execution may corrupt data delivered from 
its producer
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GPU kernel abortion : 
To immediately abort the low priority kernel



Design - Preemption with Transactionized Kernels

● Our design is structured in
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GPU memory context saving/restoring : 
For re-execution of a preempted kernel



Design - Preemption with Transactionized Kernels

● Our design is structured in
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Transaction of GPU kernel execution :
To prevent simultaneously access shared kernel buffer  
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Design – Example of Transactionization Scheme

● Pseudo-preemptive priority scheduling flow of Transactionized
GPU Kernels
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Implementation – Snapshot Mechanism

● Implementing snapshot mechanism through GPGPU 
programming model
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Implementation – Snapshot Memory 
Management

● Allocating snapshot memory when allocating a kernel buffer
● Tracking kernel buffer addresses thorough metadata of kernel 

when launching kernel
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Implementation ÐSnapshot Process

! Snapshot process is implemented by kernel threads
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while(1){
if( ! Is_next_kernel )

interruptible_sleep()

if( re-execution )
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Implementation ÐPreemption Mechanism
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! Pre-preemption process
" Minimizing process of aborting scheduled kernels

! Post-preemption process
" Recovering aborted kernels to the scheduling queue

" Running a kernel launch and a post-preemption process
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Evaluation Setup (1)

● Target device environment

● Rodinia benchmark suite 3.1
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Evaluation Setup (2)

● Micro benchmark (M-Bench)
○ We made simple GPGPU workload to be used for lower priority 

workload than Rodinia benchmarkÕs workloads

○ M-Bench running in background disturb the high priority task

● Priority configuration
○ [E] : Emergency priority

§ This priority is the highest priority and does not require snapshotting

○ [C] : Common priority
§ This priority is a higher priority than M -Bench

○ [N] : Normal environment
§ This is result of evaluation in vanilla kernel
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Performance of High Priority Task

● Performance of a high priority task
○ Degrading performance up to 186.9× depending on low priority tasks 

on normal environment
○ Guaranteeing consistent performance regardless of background load 

on Transactionization scheme
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Scheduling Delay on Original Environment

● Histogram of scheduling delay of high priority kernels
○ Scheduling delay depending on the running kernel length in normal 

environment

● Our approach suppressed the launch delay of high-priority kernels 
within 18μs
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Analysis of Preemption Delay

! There is no delay caused by eviction in the preemption process 
since it exceeds the majority of 18 μs
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Snapshotting Overhead

● Our scheme has significant overhead due to snapshotting
○ Advantages of performance improvement due to launch without 

snapshotting at emergency priority
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Discussion

! Reducing snapshot overhead through high bandwidth memory 
(HBM)

" Exynos 8890 provides up to 51 GB/s memory bandwidth while the 
device used in our evaluation presents 28.7 GB/s 

" Snapshot process is more efficient when using HBM because it 
implements memory copying using ARM's vector instruction set

! Selective snapshot process using compile-time hints
" GPU kernel is idempotent sometimes
" If enabling to detect idempotent kernels, then selective snapshot 

processes can be used
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Conclusion

! A GPU kernel transactionization for preemptive scheduling
" We proposed a GPU kernel transactionization scheme that enables 

immediate abortion and re -execution of a GPU kernel

" Based on the transactionization scheme, we developed a pseudo -
preemptive GPU kernel scheduler

! Evaluation results showed that the scheduling delay for the urgent 
task was reduced to approximately 18 μs

! Source code is available to public at 
" https://github.com/Hyunsu -Lee/psched_gpu
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Q&A
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Backup Slide (1)

● Multiple priority evaluation
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