A GPU Kernel Transactionization Scheme
for Preemptive Priority Scheduling

Hyeonsu Lee, Jaehun Roh, Euiseong Seo
School of Software

Sungkyunkwan University

SUNG KYUN KWAN
o) UNIVERSITY

Index
Contents

Introdiuztioon
Motivation
Related Work
Background
Our Approach

| Design

| Implementation
Evaluation

Conclusion

Introduction

e GPU is specialized in parallel computing workload

o Embedded systems can earn substantial benefit from GPU
computing

SGEMM Performance a.
(Matrix Size = 16K x 16K) e g .
Health Analysis

8- 13.6! Faster

D
g
o
0
0
o
0
o
o
+
0
o
................ >
0
s
0
0
s
0
0
0
s
0
0
0
0
s

Face Detection

Embedded @

0.7 TFLOPS

Voice Recognition
| J

5.0 TFLOPS

Performance (TFLOPS)

IvyBridge 2 x K40 4 x K40
Dual-Socket

NVIDIA’s Machine Learning Benchmark

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 3

Introduction
Motivation
Related Work
Background
Our Approach

I Design

| Implementation
Evaluation

Conclusion

Motivation

I Example: Autonomous vehicle control systems using GPU
High Priority

Object Detection

—

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 5

Motivation

I Priority inversion problem on GPU
" No GPU Preemption HW and Interfaces

Priority : Kernel B > Kernel A

v

CPU - Kernel A — KernelB
| |

! |

GPU — : |

Time

v

Kernel B
Deadline

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Motivation

Embedded Systems Need
Preemptive Priority Scheduling of GPU Kernels

Introduction
Motivation
Related Work
Background
Our Approach

e Design

* |Implementation
Evaluation

Conclusion

Related Work - Hardware

I HW extension for preemptive GPU scheduling

« Experimental architecture was proposed and evaluated with
simulation

* Nvidia commercialized GPUs with HW preemption
(But, they have not disclosed API for its, yet)

I Limitations of HW GPU preemption

« Up to 100! s context switching time from massive amount of state
saving/restoring

* Increased complexity in HW design and thus cost to manufacture

Related Work - Software

e Kernel slicing approach

High Priority High Priority High Priority Short Sub
Sub Kernel Sub Kernel Sub Kernel Delay Kernel

Determined through static analysis

e Thread-block-level scheduling approach

Repeat Block
Thread T Task Delayed

- Block

No '~ Preemption? —— Switching to the
" Yes highest-priority kernel

We propose a software preemption solution that
I Immediately aborts currently running kernel
I Re-executes aborted kernels later

Introduction
Motivation
Related Work
Background

Our Approach
| Design

| Implementation
Evaluation

Conclusion

11

Background - Shared System Memory

e GPU memory management in embedded systems

CPU Virtual Address Space GPU Virtual Address Space

Host-side
Buffer

—

, Kernel Kernel

Buffer 1 Buffer 2

Entry

Entry

Shared

MMU CPU

Shared

CPU can directly
access GPU memory

IoMMU GPU

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

12

Background b Shared Kernel Buffers

I Producer-consumer relationships through sharing kernel buffers

I Blind abortion and re -execution may corrupt data delivered from

Its producer

Task
$
CPU Kernel
(ready) Abortion

GPU Memory

Re-use

|

GPU Kernel “/ Write

(running) A

\ Shared
SW Kernel

Buffer

Producer Consumer Relationship

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 13

Introduction
Motivation
Related Work
Background

Our Approach
 Design

* Implementation
Evaluation

Conclusion

14

"HE%&)" +,-$.8'/$-0' 1*2-$.8SAB*&" TH#

l "#$%&'()*+%) (% (,$#-,#%$' &%)+
GPU kernel abortion :
To immediately abort the low priority kernel

@./)*$.*$-A
6" &"7
<30"5=7%&
>:||:|| I,'/
BC.*-$.&
D.++2&5
\/ @./')*$.*$'A

6"*&"7

Paasal 11
>:|I:|I
),

%/01%2'$+'3%4$5+(5-,)6+)75,)6+%8-9":'%;6$%0%$":<,)='%0$)63$),>%8-9') +* 89

Design - Preemption with Transactionized Kernels

® Our design is structured in

GPU memory context saving/restoring :
For re-execution of a preempted kernel

Scheduling
Queue [

Kernel Buffer |

Roll-back -

Kernel Buffer
Snapshot

Running *, . . .
Queue
GPU

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

16

Design - Preemption with Transactionized Kernels

e Our design is structured in

Transaction of GPU kernel execution :
To prevent simultaneously access shared kernel buffer

Scheduling
Queue [

Dirty Data
Snapshot

Inconsistency of
a kernel buffer

11
Queue
GPU

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 17

"HSO& Y+ &H+,-5.&5/+-$.8,1"2"

| "HS%&'()*%o+(,)-,.+/0)%-+(1.+1(% 2BF6L+/0)%02%& ()*
5 #(0.'61(-%2(07%-),8-90++/):%+0%& () *%2/)/-9

0,1'89:$&% 34567 ||~ 96LM)H<EL
4*.,"## 0,1"89:$&% :
l MREM:
345", "*&": -
V+&#+,-$.& 0&+=#1.--$&%— 6.7'<9&&$&Y%— 6.7'.&"

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

18

Design - Example of Transactionization Scheme

e Pseudo-preemptive priority scheduling flow of Transactionized
GPU Kernels

Kernel Kernel L.
A B Priority : Kernel A < Kernel B
GPU Job l Submit LSmeit Done & Schedule
\ ' — g
Scheduler Schedule -‘ / ome \
Ke:\nel Abort Ke;nel | Kernel R hedul
Command \ A e-scheduie
Snapshot \, Y Abort \ X
Module \
System :Snapshotting| iLaunch|goling back
Kernel >
Memory | GPU Mem. Launch : Snapshot Mem. Launch
Snapshot Mem. ‘ GPU Mem.
Kernel \ Kernel
A \ A
1 : { .
GPU Running Running
A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Running

19

Introduction
Motivation
Related Work
Background

Our Approach
| Design

' Implementation
Evaluation

Conclusion

20

Implementation — Shapshot Mechanism

e Implementing snapshot mechanism through GPGPU
programming model

Kernel Buffer Kernel Instance Kernel
Task — . - . — —
Allocation Creation Launch

GPU ¥ ¥ \
. Snapshot Snapshot Target i
Device : — S — Snapshotting
Driver Allocation Determination

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Implementation - Shapshot Memory
Management

e Allocating snapshot memory when allocating a kernel buffer

e Tracking kernel buffer addresses thorough metadata of kernel
when launching kernel

|
Root '
A Kernel
L. Instance
Bufter Buffer Address pointing |
/\ /\ Kernel Buffer
Address List
Buffer Buffer Buffer EliEr Binary Data
lDecoding &
Kernel | . Snapshot Generating
Buffer Memory Snapshot Target

Allocation with same size Address List

Implementation B Snapshot Process

I Snapshot process is implemented by kernel threads

High Priority Low Priority while(1){
Task — if(! Is_next_kernel)
Kernel . 2.Snapshot [KEMEL 1| anch interruptible_sleep()
4 Launch “-.Cancel (wake -up) R 5
.............. . if(re-execution)
................ | . roll-back();
Snapshof Snapshot | gy | % grapshot)
Thregd -2 Thread-1 | ™% | L 000 PSOT]
38W|tch|ng \ submit_to_GPU();

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Snapshot Thread Pseudo Code

J

Snapshot Cancel Range

23

Implementation BDPreemption Mechanism

| Pre-preemption process
" Minimizing process of aborting scheduled kernels

| Post-preemption process
" Recovering aborted kernels to the scheduling queue
" Running a kernel launch and a post-preemption process

Post -Preemption Process

| | |
l STATUS CODE ->P_SLOT P_SNAP P_RUN
Scheduling Scheduling & : Kernel Interrupt
N Queue I Preemption "I Snapshotting 1 Execution Handler

De-queue Snapshot GPU
. D
Slot Cancel Abortion one
t t t

Pre-Preemption Process

Introduction
Motivation
Related Work
Background

Our Approach
| Design

| Implementation
Evaluation

Conclusion

25

Evaluation Setup (1)

e Target device environment

Board Odroid-XU3 Rev. 2 SoC Exynos 5422
4xCortex A15@2.0Ghz Mali-T628 MP6
CPU 4xCortex A7@1.4Ghz GPU @600Mhz
2MB Shared L2 Cache 256KB L2 Cache
Memory 2GB LPDDR3 RAM @ 933MHz
Storage 32GB eMMC 5.0 HS400 Flash Storage
OS Linux 3.10.72 with Mali rSp0-06rel0 driver

e Rodinia benchmark suite 3.1

ARMMALI

Visual Technology

Program Abbr Description Num. of Snapshot Size Snapshot Memory | Avg. Kernel | Turnaround
)) Kernel Inst. | per Kernel (Avg.) Size (at Peak) Exec. Time Time
k-Nearest Neighbors NN Dense Linear Algebra 1 60 MB 60.35 MB 10.38 ms 0.68 s
Back Propeagation BP Unstructured Grid Algebra 2 6.79 MB 9.42 MB 15.74 ms 0.39 s
PathFinder PF Dynamic Programming 5 38.84 MB 39.25 MB 609 ms 3.50 s
Breadth-First Search BF Graph Traversal 24 21.94 MB 37.55 MB 4.57 ms 091 s
Kmeans KM Dense Linear Algebra 38 67.6 MB 130.38 MB 115.01 ms 8.40 s
Hotspot3D 3D Structured Grid 100 24 MB 243 MB 10.78 ms 11.82 s
LU Decomposition LUD Dense Linear Algebra 190 4.15 MB 26.92 MB 2.35 ms 10.18 s
Needleman-Wunsch NW Dynamic Programming 255 32.47 MB 104.45 MB 0.29 ms 0.67 s
Gaussian Elimination GE Data Mining 510 0.50 MB 1.18 MB 0.26 ms 0.40 s
Myocyte MC Biological Simulation 3,913 1.76 MB 2.12 MB 0.13 ms 8.63 s
CFD Solver CF Fluid Dynamics 14,004 7.24 MB 19.3 MB 5.53 ms 99.99 s

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 26

Evaluation Setup (2)

e Micro benchmark (M-Bench)

o We made simple GPGPU workload to be used for lower priority
workload than Rodinia benchmarkOs workloads

o M-Bench running in background disturb the high priority task

e Priority configuration
o [E] : Emergency priority
= This priority is the highest priority and does not require snapshotting
o [C] : Common priority
= This priority is a higher priority than M -Bench
o [N] : Normal environment
= This is result of evaluation in vanilla kernel

Performance of High Priority Task

e Performance of a high priority task

o Degrading performance up to 186.9x depending on low priority tasks
on normal environment

o Guaranteeing consistent performance regardless of background load
on Transactionization scheme

186.9

100
1xM-Bench[N] &——3 2xM-Bench[N] =
80 | 1xM-Bench[C] mmmmm 2xM-Bench[C] mmmmm
1xM-Bench[E] &E—"3 2xM-Bench[E]

PR

2.5
2

NN BP FP BF KM 3D LUD NwW GE MC CFD

Normalized Turnaround Time

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 28

Scheduling Delay on Original Environment

e Histogram of scheduling delay of high priority kernels
o Scheduling delay depending on the running kernel length in normal
environment

e Our approach suppressed the launch delay of high-priority kernels
within 18pus

Normal environment Transactionization scheme
s 100000
£ 10000 3
E CICJ 10000
Eg 1000 S 1000
3 100 S]
= o 00
= 10 S 10
» A1 TN | A
£ o =
= 10 20 30 40 50 60 70 80 90 100110120 = OE__1_(_)_1_2__1_AE_1_6_]_8_520222426283032343638404244464850
Scheduling Delay (ms) l Eviction Delay (us)
.. >
Increased delay due to kernel length 99.9% percentile within 18 ps

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 29

Analysis of Preemption Delay

I There is no delay caused by eviction in the preemption process
since it exceeds the majority of 18 ps

07ABCD Inmmmm *ESFGES5<GH;IB

'
N > Eviction Delay (18us)
s . .
O g
03
L0
Yoo 1%"
% 1%%
g Preemption
!#f overhead
' within 10ps

(() *)+ - & 01/ (2:3, 4 4+

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 30

Snapshotting Overhead

e Our scheme has significant overhead due to snapshotting

o Advantages of performance improvement due to launch without
shapshotting at emergency priority

(513) Using invalidated kernel buffer

(0]

£ 1.5 -
Eo1a Snapshotting
§ 13| Overhead
E 1.2

S 11

D 1

N

(_EU 0.9

(23 0.8

o 0.7

(@)}

© 0.6

g

Z 05

NN BP FP BF KM 3D LUD NW GE MC CFD

Common Priority . Emergency Priority s

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 31

Discussion

I Reducing snapshot overhead through high bandwidth memory
(HBM)

" Exynos 8890 provides up to 51 GB/s memory bandwidth while the
device used in our evaluation presents 28.7 GB/s

" Snapshot process is more efficient when using HBM because it
Implements memory copying using ARM's vector instruction set

I Selective snapshot process using compile-time hints
" GPU kernel is idempotent sometimes

" If enabling to detect idempotent kernels, then selective snapshot
processes can be used

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 32

Introduction
Motivation
Related Work
Background
Our Approach

e Design

* |Implementation
Evaluation

Conclusion

33

Conclusion

I A GPU kernel transactionization for preemptive scheduling

" We proposed a GPU kernel transactionization scheme that enables
Immediate abortion and re -execution of a GPU kernel

" Based on the transactionization scheme, we developed a pseudo -
preemptive GPU kernel scheduler

| Evaluation results showed that the scheduling delay for the urgent
task was reduced to approximately 18 ps

I Source code is available to public at
" https://github.com/Hyunsu -Lee/psched _gpu

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling 34

Thank you
Q&A

35

Backup Slide (1)

e Multiple priority evaluation

18
16 Priority [-10] 1
14 Priority [O]
12 Priority [10] &

10
8
6

4 «

|
X

"0‘ aval
0% %%
%% 6%,
R 13
0% %%
15 2024
%% o2
0% %%
%% %
0% %%
%% %
Q) %)
K X3
%% o2
0% %%
%% %
%% 1
Q) %)
%% ol

2

Q

X

Normalized Turnaround Time

o

|92

v
R

s
%%

2

X

x>
. 9.

Q
K

XX
%%

.

&

<D

e

X2
K

K

%

029
RS

o %

Q

X
%%

X
QR

e

K
R

!
&

—
e%%

X

X
%%

%

%
R

3

XKD
KRR

000
o %%

9.

o)

0;0‘

%

7

0
U
U
N
o
L
n
N\
<
w
O
—
C
O

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

ol lo%e!
K o3
R3S A
2o R
%8, M
KA R
%8 o
ol lo%e!

DA
ol R
%0 o
> <
5 M
KA R
%8 o
ol R34
K
ol R
& K
% 15
KA X3

36

