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Introduction

e GPU is specialized in parallel computing workload

o Embedded systems can earn substantial benefit from GPU
computing
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Motivation

I Example: Autonomous vehicle control systems using GPU
High Priority

Object Detection

—
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Motivation

I Priority inversion problem on GPU
" No GPU Preemption HW and Interfaces

Priority : Kernel B > Kernel A
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Motivation

Embedded Systems Need
Preemptive Priority Scheduling of GPU Kernels
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Related Work - Hardware

I HW extension for preemptive GPU scheduling

« Experimental architecture was proposed and evaluated with
simulation

* Nvidia commercialized GPUs with HW preemption
(But, they have not disclosed API for its, yet)

I Limitations of HW GPU preemption

« Up to 100! s context switching time from massive amount of state
saving/restoring

* Increased complexity in HW design and thus cost to manufacture



Related Work - Software

e Kernel slicing approach

High Priority  High Priority High Priority Short Sub
Sub Kernel Sub Kernel  Sub Kernel Delay  Kernel

Determined through static analysis

e Thread-block-level scheduling approach

Repeat Block
Thread T Task Delayed

- Block

No '~ Preemption? —— Switching to the
" Yes highest-priority kernel

We propose a software preemption solution that
I Immediately aborts currently running kernel
I Re-executes aborted kernels later
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Background - Shared System Memory

e GPU memory management in embedded systems

CPU Virtual Address Space GPU Virtual Address Space

Host-side
Buffer

—

, Kernel Kernel

Buffer 1 Buffer 2

Entry

Entry

Shared

MMU CPU

Shared

CPU can directly
access GPU memory

IoMMU GPU
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Background b Shared Kernel Buffers

I Producer-consumer relationships through sharing kernel buffers

I Blind abortion and re -execution may corrupt data delivered from

Its producer

Task
$
CPU Kernel
(ready) Abortion

GPU Memory
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(running) A
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Design - Preemption with Transactionized Kernels

® Our design is structured in

GPU memory context saving/restoring :
For re-execution of a preempted kernel

Scheduling
Queue [

Kernel Buffer |

Roll-back -

Kernel Buffer
Snapshot

Running *, . . .
Queue
GPU
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Design - Preemption with Transactionized Kernels

e Our design is structured in

Transaction of GPU kernel execution :
To prevent simultaneously access shared kernel buffer

Scheduling
Queue [

Dirty Data
Snapshot

Inconsistency of
a kernel buffer

11
Queue
GPU
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Design - Example of Transactionization Scheme

e Pseudo-preemptive priority scheduling flow of Transactionized
GPU Kernels

Kernel Kernel L.
A B Priority : Kernel A < Kernel B
GPU Job l Submit LSmeit Done & Schedule
\ ' — g
Scheduler Schedule -‘ / ome \
Ke:\nel Abort Ke;nel | Kernel R hedul
Command \ A e-scheduie
Snapshot \, Y Abort \ X
Module \
System :Snapshotting| iLaunch|goling back
Kernel >
Memory | GPU Mem. Launch : Snapshot Mem. Launch
Snapshot Mem. ‘ GPU Mem.
Kernel \ Kernel
A \ A
1 : { .
GPU Running Running
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Implementation — Shapshot Mechanism

e Implementing snapshot mechanism through GPGPU
programming model

Kernel Buffer Kernel Instance Kernel
Task — . - . — —
Allocation Creation Launch

GPU ¥ ¥ \
. Snapshot Snapshot Target i
Device : — S — Snapshotting
Driver Allocation Determination
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Implementation - Shapshot Memory
Management

e Allocating snapshot memory when allocating a kernel buffer

e Tracking kernel buffer addresses thorough metadata of kernel
when launching kernel

|
Root '
A Kernel
L. Instance
Bufter Buffer Address pointing |
/\ /\ Kernel Buffer
Address List
Buffer Buffer Buffer EliEr Binary Data
lDecoding &
Kernel | . Snapshot Generating
Buffer Memory Snapshot Target

Allocation with same size Address List



Implementation B Snapshot Process

I Snapshot process is implemented by kernel threads

High Priority Low Priority while(1){
Task — if(! Is_next_kernel)
Kernel . 2.Snapshot [KEMEL 1| anch interruptible_sleep()
4 Launch “-.Cancel (wake -up) R 5
.............. . if( re-execution )
................ | . roll-back();
Snapshof Snapshot | gy | % grapshot)
Thregd -2 Thread-1 | ™% | L 000 PSOT ]
38W|tch|ng \ submit_to_GPU();
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Implementation BDPreemption Mechanism

| Pre-preemption process
" Minimizing process of aborting scheduled kernels

| Post-preemption process
" Recovering aborted kernels to the scheduling queue
" Running a kernel launch and a post-preemption process

Post -Preemption Process

| | |
l STATUS CODE ->P_SLOT P_SNAP P_RUN
Scheduling Scheduling & : Kernel Interrupt
N Queue I Preemption "I Snapshotting 1 Execution Handler

De-queue  Snapshot GPU
. D
Slot Cancel Abortion one
t t t
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Evaluation Setup (1)

e Target device environment

Board Odroid-XU3 Rev. 2 SoC Exynos 5422
4xCortex A15@2.0Ghz Mali-T628 MP6
CPU 4xCortex A7@1.4Ghz GPU @600Mhz
2MB Shared L2 Cache 256KB L2 Cache
Memory 2GB LPDDR3 RAM @ 933MHz
Storage 32GB eMMC 5.0 HS400 Flash Storage
OS Linux 3.10.72 with Mali rSp0-06rel0 driver

e Rodinia benchmark suite 3.1

ARMMALI

Visual Technology

Program Abbr Description Num. of Snapshot Size Snapshot Memory | Avg. Kernel | Turnaround
) ) Kernel Inst. | per Kernel (Avg.) Size (at Peak) Exec. Time Time
k-Nearest Neighbors NN Dense Linear Algebra 1 60 MB 60.35 MB 10.38 ms 0.68 s
Back Propeagation BP Unstructured Grid Algebra 2 6.79 MB 9.42 MB 15.74 ms 0.39 s
PathFinder PF Dynamic Programming 5 38.84 MB 39.25 MB 609 ms 3.50 s
Breadth-First Search BF Graph Traversal 24 21.94 MB 37.55 MB 4.57 ms 091 s
Kmeans KM Dense Linear Algebra 38 67.6 MB 130.38 MB 115.01 ms 8.40 s
Hotspot3D 3D Structured Grid 100 24 MB 243 MB 10.78 ms 11.82 s
LU Decomposition LUD Dense Linear Algebra 190 4.15 MB 26.92 MB 2.35 ms 10.18 s
Needleman-Wunsch NW Dynamic Programming 255 32.47 MB 104.45 MB 0.29 ms 0.67 s
Gaussian Elimination GE Data Mining 510 0.50 MB 1.18 MB 0.26 ms 0.40 s
Myocyte MC Biological Simulation 3,913 1.76 MB 2.12 MB 0.13 ms 8.63 s
CFD Solver CF Fluid Dynamics 14,004 7.24 MB 19.3 MB 5.53 ms 99.99 s
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Evaluation Setup (2)

e Micro benchmark (M-Bench)

o We made simple GPGPU workload to be used for lower priority
workload than Rodinia benchmarkOs workloads

o M-Bench running in background disturb the high priority task

e Priority configuration
o [E] : Emergency priority
= This priority is the highest priority and does not require snapshotting
o [C] : Common priority
= This priority is a higher priority than M -Bench
o [N] : Normal environment
= This is result of evaluation in vanilla kernel



Performance of High Priority Task

e Performance of a high priority task

o Degrading performance up to 186.9x depending on low priority tasks
on normal environment

o Guaranteeing consistent performance regardless of background load
on Transactionization scheme
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Scheduling Delay on Original Environment

e Histogram of scheduling delay of high priority kernels
o Scheduling delay depending on the running kernel length in normal
environment

e Our approach suppressed the launch delay of high-priority kernels
within 18pus
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Analysis of Preemption Delay

I There is no delay caused by eviction in the preemption process
since it exceeds the majority of 18 ps
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Snapshotting Overhead

e Our scheme has significant overhead due to snapshotting

o Advantages of performance improvement due to launch without
shapshotting at emergency priority
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Discussion

I Reducing snapshot overhead through high bandwidth memory
(HBM)

" Exynos 8890 provides up to 51 GB/s memory bandwidth while the
device used in our evaluation presents 28.7 GB/s

" Snapshot process is more efficient when using HBM because it
Implements memory copying using ARM's vector instruction set

I Selective snapshot process using compile-time hints
" GPU kernel is idempotent sometimes

" If enabling to detect idempotent kernels, then selective snapshot
processes can be used
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Conclusion

I A GPU kernel transactionization for preemptive scheduling

" We proposed a GPU kernel transactionization scheme that enables
Immediate abortion and re -execution of a GPU kernel

" Based on the transactionization scheme, we developed a pseudo -
preemptive GPU kernel scheduler

| Evaluation results showed that the scheduling delay for the urgent
task was reduced to approximately 18 ps

I Source code is available to public at
" https://github.com/Hyunsu -Lee/psched _gpu
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