
A GPU Kernel Transactionization Scheme
for Preemptive Priority Scheduling

Hyeonsu Lee, Jaehun Roh, Euiseong Seo

School of Software

Sungkyunkwan University

! Introduction

! Motivation

! Related Work

! Background

! Our Approach
! Design

! Implementation

! Evaluation

! Conclusion

Index
Contents

2

! Introduction

! Motivation

! Related Work

! Background

! Our Approach
! Design

! Implementation

! Evaluation

! Conclusion

Introduction

● GPU is specialized in parallel computing workload
○ Embedded systems can earn substantial benefit from GPU

computing

3

Embedded

Voice Recognition

Face Detection

Health Analysis

NVIDIA’s Machine Learning Benchmark

13.6! Faster

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

! Introduction

! Motivation

! Related Work

! Background

! Our Approach
! Design
! Implementation

! Evaluation

! Conclusion
4

Delayed

Motivation

! Example: Autonomous vehicle control systems using GPU

5

W..wait !

GPU Embedded System

Object Detection

Run

High Priority
Evasion Path Finder

Crash

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Motivation

! Priority inversion problem on GPU
" No GPU Preemption HW and Interfaces

6

Priority : Kernel B > Kernel A

CPU

GPU

Kernel B
Deadline

Kernel A Kernel B

Time

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Motivation

● Priority inversion problem on GPU
○ No GPU Preemption HW and Interfaces

7

Priority : Kernel B > Kernel A

CPU

GPU

Kernel B
Deadline

Kernel A Kernel B

Time

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Embedded Systems Need
Preemptive Priority Scheduling of GPU Kernels

• Introduction

• Motivation

• Related Work

• Background

• Our Approach
• Design
• Implementation

• Evaluation

• Conclusion
8

Related Work - Hardware

! HW extension for preemptive GPU scheduling
• Experimental architecture was proposed and evaluated with

simulation
• Nvidia commercialized GPUs with HW preemption

! Limitations of HW GPU preemption
• Up to 100! s context switching time from massive amount of state

saving/restoring
• Increased complexity in HW design and thus cost to manufacture

9

(But, they have not disclosed API for its, yet)

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

● Kernel slicing approach

● Thread-block-level scheduling approach

High Priority
Sub Kernel

Related Work - Software

10

Short
Delay

Sub
Kernel

High Priority
Sub Kernel

High Priority
Sub Kernel

Determined through static analysis

Block
Task

Preemption?

Repeat

No

Thread
Block

Yes

Switching to the
highest-priority kernel

Delayed

We propose a software preemption solution that
! Immediately aborts currently running kernel
! Re-executes aborted kernels later

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

! Introduction

! Motivation

! Related Work

! Background

! Our Approach

! Design

! Implementation

! Evaluation

! Conclusion
11

Background – Shared System Memory

● GPU memory management in embedded systems

12

Kernel
Buffer 1

Kernel
Buffer 2

GPU Virtual Address SpaceCPU Virtual Address Space

Host-side
Buffer

GPUIOMMUCPUMMU

Entry
Shared

Entry
Shared

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

CPU can directly
access GPU memory

Background ÐShared Kernel Buffers

! Producer-consumer relationships through sharing kernel buffers

! Blind abortion and re -execution may corrupt data delivered from
its producer

13

Kernel
B

CPU
(ready)

Shared
Kernel
Buffer

GPU
(running)

GPU MemoryTask

Kernel
A

Input Data

Result Data

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Producer Consumer Relationship

Write

Re-use

Abortion

• Introduction

• Motivation

• Related Work

• Background

• Our Approach
• Design
• Implementation

• Evaluation

• Conclusion
14

!"#$%&'()*""+,-$.&'/$-0' 1*2-$.&$4"56"*&"7#

! "#$%&'()*+%)(%(,$#-,#$'&%)+

89
:);

<30"5=7$&%
>="="

?=&&$&%'
>="="

@./')*$.*$-A
6"*&"7

BC.*-$.&
D.++2&5

@./')*$.*$-A
6"*&"7

.%/01%2'$+'3%4$5+(5-,)6+)75,)6+%8-9':'%;6$%0$'':<,)='%0$)6$),>%8-9')+*

GPU kernel abortion :
To immediately abort the low priority kernel

Design - Preemption with Transactionized Kernels

● Our design is structured in

16
GPU

Scheduling
Queue

Running
Queue

Kernel Buffer
Snapshot

Kernel Buffer
Roll-back

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

GPU memory context saving/restoring :
For re-execution of a preempted kernel

Design - Preemption with Transactionized Kernels

● Our design is structured in

17
GPU

Scheduling
Queue

Running
Queue

Dirty Data
Snapshot

Inconsistency of
a kernel buffer

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Transaction of GPU kernel execution :
To prevent simultaneously access shared kernel buffer

!"#$%&'()*+&#+,-$.&$/+-$.&0,1"2"

! "#$%&'()'*%+(,)-,.+/0)%-+(1.+1('%20(%('3'4'.1+/0)%02%&'()'*
5 #(0.'61('-%2(07%-),8-90++/):%+0%&'()'*%2/)/-9

18

345'6.7
0,1"89:$&%

0,1"89:$&%
4*.,"##

345';"*&":
)*+&#+,-$.& 6.7'<9&&$&% 6.7'!.&"0&+=#1.--$&%

;.9'61*/):%<'=1'-+

;"*&":

345';"*&":
)*+&#+,-$.&

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Design – Example of Transactionization Scheme

● Pseudo-preemptive priority scheduling flow of Transactionized
GPU Kernels

19

GPU Job
Scheduler

Snapshot
Module

System
Memory

GPU

Kernel
A

Kernel
A

Schedule

Submit

Kernel
B

Submit

Running

Launch
Kernel

A

Running

Kernel
B

Launch

Kernel
A

Abort
Abort

Command

Done & Schedule

Kernel
B

Kernel
A Re-schedule

Rolling back
Snapshot Mem.
GPU Mem.

Running

Kernel
A

Launch

Priority : Kernel A < Kernel B

Snapshotting
GPU Mem.
Snapshot Mem.

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

! Introduction

! Motivation

! Related Work

! Background

! Our Approach

! Design

! Implementation

! Evaluation

! Conclusion
20

Implementation – Snapshot Mechanism

● Implementing snapshot mechanism through GPGPU
programming model

21

Task

GPU
Device
Driver

Snapshot Target
Determination SnapshottingSnapshot

Allocation

Kernel Instance
Creation

Kernel
Launch

Kernel Buffer
Allocation

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Implementation – Snapshot Memory
Management

● Allocating snapshot memory when allocating a kernel buffer
● Tracking kernel buffer addresses thorough metadata of kernel

when launching kernel

22

Root

Buffer Buffer

Buffer Buffer Buffer Buffer

Job
JobKernel

Instance

Kernel
Buffer

Snapshot
Memory

Allocation with same size

Kernel Buffer
Address List

Snapshot Target
Address List

Binary Data
Decoding &
Generating

Address pointing

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Implementation ÐSnapshot Process

! Snapshot process is implemented by kernel threads

23

while(1){
if(! Is_next_kernel)

interruptible_sleep()

if(re-execution)
roll-back();

else
snapshot();

submit_to_GPU();
}

Snapshot Thread Pseudo Code

Snapshot Cancel Range

Low Priority
Task

High Priority
Task

Snapshot
Thread -1

Snapshot
Thread -2

Kernel 1.Launch
(wake -up)4.Launch

2.Snapshot
Cancel

3.Switching

Kernel

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Implementation ÐPreemption Mechanism

24

! Pre-preemption process
" Minimizing process of aborting scheduled kernels

! Post-preemption process
" Recovering aborted kernels to the scheduling queue

" Running a kernel launch and a post-preemption process

K
Scheduling &
Preemption

Scheduling
Queue

Slot
Kernel

Execution
Snapshotting

Interrupt
Handler

De-queue
Slot

Snapshot
Cancel

GPU
Abortion

Done

P_RUNP_SNAPP_SLOT

Pre-Preemption Process

Post -Preemption Process

STATUS CODE ->

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

! Introduction

! Motivation

! Related Work

! Background

! Our Approach

! Design

! Implementation

! Evaluation

! Conclusion
25

Evaluation Setup (1)

● Target device environment

● Rodinia benchmark suite 3.1

26A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Evaluation Setup (2)

● Micro benchmark (M-Bench)
○ We made simple GPGPU workload to be used for lower priority

workload than Rodinia benchmarkÕs workloads

○ M-Bench running in background disturb the high priority task

● Priority configuration
○ [E] : Emergency priority

§ This priority is the highest priority and does not require snapshotting

○ [C] : Common priority
§ This priority is a higher priority than M -Bench

○ [N] : Normal environment
§ This is result of evaluation in vanilla kernel

27A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Performance of High Priority Task

● Performance of a high priority task
○ Degrading performance up to 186.9× depending on low priority tasks

on normal environment
○ Guaranteeing consistent performance regardless of background load

on Transactionization scheme

28

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

NN BP FP BF KM 3D LUD NW GE MC CFD

N
or

m
al

iz
ed

 T
ur

na
ro

un
d

Ti
m

e

 20
 40
 60
 80

 100 186.9
1xM-Bench[N]
1xM-Bench[C]
1xM-Bench[E]

2xM-Bench[N]
2xM-Bench[C]
2xM-Bench[E]

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Scheduling Delay on Original Environment

● Histogram of scheduling delay of high priority kernels
○ Scheduling delay depending on the running kernel length in normal

environment

● Our approach suppressed the launch delay of high-priority kernels
within 18μs

29

!

"

"!

"!!

"!!!

"!!!!

"! #! $! %! &! '! (!)! *! "!! ""! "#!!"
#$

%
&

'(
)*

*"
&

&
%

+
*%

,

+,-./01234 5.167 89:;

!

"

"!

"!!

"!!!

"!!!!

"!!!!!

"! "# "$ "% "& #! ## #$ #% #& '! '# '$ '% '& $! $# $$ $% $& (!!
"#

$%
&'
()

**
"&
&%
+*
%,

!"#$%#&' ()*+, -./0

Normal environment

99.9% percentile within 18 μs

Transactionization scheme

Increased delay due to kernel length

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Analysis of Preemption Delay

! There is no delay caused by eviction in the preemption process
since it exceeds the majority of 18 μs

30

!"

!#$

!#"

!%$

!%"

!&$

!&"

!'$

!'"

!"$

(()* *+)+, -. &/ 01/ (2 3, .4 4+,

/5
67

85
9!

:;<
5!

=
>

?@

07ABCD *E5FGE55<GH;IB

Preemption
overhead
within 10μs

> Eviction Delay (18μs)

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Snapshotting Overhead

● Our scheme has significant overhead due to snapshotting
○ Advantages of performance improvement due to launch without

snapshotting at emergency priority

31

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

NN BP FP BF KM 3D LUD NW GE MC CFD

5.13

Av
er

ag
e

N
or

m
al

iz
ed

 T
u
rn

ar
ou

n
d
 T

im
e

Common Priority Emergency Priority

Using invalidated kernel buffer

Snapshotting
Overhead

A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Discussion

! Reducing snapshot overhead through high bandwidth memory
(HBM)

" Exynos 8890 provides up to 51 GB/s memory bandwidth while the
device used in our evaluation presents 28.7 GB/s

" Snapshot process is more efficient when using HBM because it
implements memory copying using ARM's vector instruction set

! Selective snapshot process using compile-time hints
" GPU kernel is idempotent sometimes
" If enabling to detect idempotent kernels, then selective snapshot

processes can be used

32A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

• Introduction

• Motivation

• Related Work

• Background

• Our Approach
• Design
• Implementation

• Evaluation

• Conclusion
33

Conclusion

! A GPU kernel transactionization for preemptive scheduling
" We proposed a GPU kernel transactionization scheme that enables

immediate abortion and re -execution of a GPU kernel

" Based on the transactionization scheme, we developed a pseudo -
preemptive GPU kernel scheduler

! Evaluation results showed that the scheduling delay for the urgent
task was reduced to approximately 18 μs

! Source code is available to public at
" https://github.com/Hyunsu -Lee/psched_gpu

34A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

Thank you
Q&A

35

Backup Slide (1)

● Multiple priority evaluation

36A GPU Kernel Transactionization Scheme for Preemptive Priority Scheduling

 1
 2
 3
 4

NN BP PF BFS KM 3D LUD NW GS MC CFD

No
rm

al
ize

d
Tu

rn
ar

ou
nd

 T
im

e

 6
 8

 10
 12
 14
 16
 18

Priority [-10]
Priority [0]
Priority [10]

